Natalie Behague , Robert Hancock , Joseph Hyde , Shoham Letzter , Natasha Morrison
{"title":"约束Ramsey和反Ramsey问题的阈值","authors":"Natalie Behague , Robert Hancock , Joseph Hyde , Shoham Letzter , Natasha Morrison","doi":"10.1016/j.ejc.2025.104159","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> be graphs. A graph <span><math><mi>G</mi></math></span> has the <em>constrained Ramsey property for</em> <span><math><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></math></span> if every edge-colouring of <span><math><mi>G</mi></math></span> contains either a monochromatic copy of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or a rainbow copy of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Our main result gives a 0-statement for the constrained Ramsey property in <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> whenever <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi></mrow></msub></mrow></math></span> for some <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is not a forest. Along with previous work of Kohayakawa, Konstadinidis and Mota, this resolves the constrained Ramsey property for all non-trivial cases with the exception of <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub></mrow></math></span>, which is equivalent to the anti-Ramsey property for <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div><div>For a fixed graph <span><math><mi>H</mi></math></span>, we say that <span><math><mi>G</mi></math></span> has the <em>anti-Ramsey property for</em> <span><math><mi>H</mi></math></span> if any proper edge-colouring of <span><math><mi>G</mi></math></span> contains a rainbow copy of <span><math><mi>H</mi></math></span>. We show that the 0-statement for the anti-Ramsey problem in <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> can be reduced to a (necessary) colouring statement, and use this to find the threshold for the anti-Ramsey property for some particular families of graphs.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"129 ","pages":"Article 104159"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thresholds for constrained Ramsey and anti-Ramsey problems\",\"authors\":\"Natalie Behague , Robert Hancock , Joseph Hyde , Shoham Letzter , Natasha Morrison\",\"doi\":\"10.1016/j.ejc.2025.104159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> be graphs. A graph <span><math><mi>G</mi></math></span> has the <em>constrained Ramsey property for</em> <span><math><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></math></span> if every edge-colouring of <span><math><mi>G</mi></math></span> contains either a monochromatic copy of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or a rainbow copy of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Our main result gives a 0-statement for the constrained Ramsey property in <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> whenever <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi></mrow></msub></mrow></math></span> for some <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is not a forest. Along with previous work of Kohayakawa, Konstadinidis and Mota, this resolves the constrained Ramsey property for all non-trivial cases with the exception of <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub></mrow></math></span>, which is equivalent to the anti-Ramsey property for <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div><div>For a fixed graph <span><math><mi>H</mi></math></span>, we say that <span><math><mi>G</mi></math></span> has the <em>anti-Ramsey property for</em> <span><math><mi>H</mi></math></span> if any proper edge-colouring of <span><math><mi>G</mi></math></span> contains a rainbow copy of <span><math><mi>H</mi></math></span>. We show that the 0-statement for the anti-Ramsey problem in <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> can be reduced to a (necessary) colouring statement, and use this to find the threshold for the anti-Ramsey property for some particular families of graphs.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"129 \",\"pages\":\"Article 104159\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000411\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000411","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Thresholds for constrained Ramsey and anti-Ramsey problems
Let and be graphs. A graph has the constrained Ramsey property for if every edge-colouring of contains either a monochromatic copy of or a rainbow copy of . Our main result gives a 0-statement for the constrained Ramsey property in whenever for some and is not a forest. Along with previous work of Kohayakawa, Konstadinidis and Mota, this resolves the constrained Ramsey property for all non-trivial cases with the exception of , which is equivalent to the anti-Ramsey property for .
For a fixed graph , we say that has the anti-Ramsey property for if any proper edge-colouring of contains a rainbow copy of . We show that the 0-statement for the anti-Ramsey problem in can be reduced to a (necessary) colouring statement, and use this to find the threshold for the anti-Ramsey property for some particular families of graphs.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.