Zhizhao Xiao , Max Rümenapf , Max Hackbarth , Andrea Hille-Reichel , Harald Horn , Johannes Eberhard Reiner
{"title":"转速和对电极配置对旋转盘生物电化学反应器(RDBER)作为微生物电解池性能的影响","authors":"Zhizhao Xiao , Max Rümenapf , Max Hackbarth , Andrea Hille-Reichel , Harald Horn , Johannes Eberhard Reiner","doi":"10.1016/j.biteb.2025.102208","DOIUrl":null,"url":null,"abstract":"<div><div>A 10 L Rotating Disc Bioelectrochemical Reactor (RDBER) was operated as a microbial electrolysis cell (MEC) under different rotational speeds and counter electrode configurations. Increasing the anode's speed from 0.25 to 1 rpm raised the anodic current density from 0.55 ± 0.14 to 1.00 ± 0.07 A m<sup>−2</sup> while increasing hydrogen production rates from 0.05 ± 0.01 to 0.18 ± 0.01 L<sub>H₂</sub> L<sub>R</sub><sup>−1</sup> d<sup>−1</sup>. Higher speeds provided no further benefit. Moving the counter electrodes to the upper reactor half reduced observed hydrogen shuttling. The modified RDBER reached current densities of 1.98 ± 0.11 A m<sup>−2</sup> and 0.99 ± 0.03 L<sub>H₂</sub> L<sub>R</sub><sup>−1</sup> d<sup>−1</sup> hydrogen production. Optical coherence tomography confirmed biofilm morphology changes but no significant increase in biovolume or substratum coverage. Hydrogen recovery remained below 50 %. While the RDBER achieved high volumetric current densities and volumetric hydrogen production rates compared to other MEC pilots, improvements in anodic current density and cathodic hydrogen recovery are required for practical application.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"31 ","pages":"Article 102208"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the rotational speed and counter electrode configuration on the performance of a rotating disc bioelectrochemical reactor (RDBER) operated as microbial electrolysis cell\",\"authors\":\"Zhizhao Xiao , Max Rümenapf , Max Hackbarth , Andrea Hille-Reichel , Harald Horn , Johannes Eberhard Reiner\",\"doi\":\"10.1016/j.biteb.2025.102208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A 10 L Rotating Disc Bioelectrochemical Reactor (RDBER) was operated as a microbial electrolysis cell (MEC) under different rotational speeds and counter electrode configurations. Increasing the anode's speed from 0.25 to 1 rpm raised the anodic current density from 0.55 ± 0.14 to 1.00 ± 0.07 A m<sup>−2</sup> while increasing hydrogen production rates from 0.05 ± 0.01 to 0.18 ± 0.01 L<sub>H₂</sub> L<sub>R</sub><sup>−1</sup> d<sup>−1</sup>. Higher speeds provided no further benefit. Moving the counter electrodes to the upper reactor half reduced observed hydrogen shuttling. The modified RDBER reached current densities of 1.98 ± 0.11 A m<sup>−2</sup> and 0.99 ± 0.03 L<sub>H₂</sub> L<sub>R</sub><sup>−1</sup> d<sup>−1</sup> hydrogen production. Optical coherence tomography confirmed biofilm morphology changes but no significant increase in biovolume or substratum coverage. Hydrogen recovery remained below 50 %. While the RDBER achieved high volumetric current densities and volumetric hydrogen production rates compared to other MEC pilots, improvements in anodic current density and cathodic hydrogen recovery are required for practical application.</div></div>\",\"PeriodicalId\":8947,\"journal\":{\"name\":\"Bioresource Technology Reports\",\"volume\":\"31 \",\"pages\":\"Article 102208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589014X25001902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X25001902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
摘要
以10 L旋转盘式生物电化学反应器(RDBER)作为微生物电解池(MEC),在不同转速和对电极配置下进行了实验研究。将阳极转速从0.25 rpm提高到1 rpm,阳极电流密度从0.55±0.14增加到1.00±0.07 A m−2,产氢率从0.05±0.01增加到0.18±0.01 LH₂LR−1 d−1。更高的速度并没有带来更多的好处。将反电极移至上部反应器,可使观察到的氢穿梭减少一半。改进后的RDBER电流密度为1.98±0.11 A m−2和0.99±0.03 LH₂LR−1 d−1产氢。光学相干断层扫描证实了生物膜形态的变化,但生物体积或基质覆盖率没有显著增加。氢气回收率保持在50%以下。虽然与其他MEC试点相比,RDBER实现了较高的体积电流密度和体积产氢率,但实际应用需要改进阳极电流密度和阴极氢气回收率。
Impact of the rotational speed and counter electrode configuration on the performance of a rotating disc bioelectrochemical reactor (RDBER) operated as microbial electrolysis cell
A 10 L Rotating Disc Bioelectrochemical Reactor (RDBER) was operated as a microbial electrolysis cell (MEC) under different rotational speeds and counter electrode configurations. Increasing the anode's speed from 0.25 to 1 rpm raised the anodic current density from 0.55 ± 0.14 to 1.00 ± 0.07 A m−2 while increasing hydrogen production rates from 0.05 ± 0.01 to 0.18 ± 0.01 LH₂ LR−1 d−1. Higher speeds provided no further benefit. Moving the counter electrodes to the upper reactor half reduced observed hydrogen shuttling. The modified RDBER reached current densities of 1.98 ± 0.11 A m−2 and 0.99 ± 0.03 LH₂ LR−1 d−1 hydrogen production. Optical coherence tomography confirmed biofilm morphology changes but no significant increase in biovolume or substratum coverage. Hydrogen recovery remained below 50 %. While the RDBER achieved high volumetric current densities and volumetric hydrogen production rates compared to other MEC pilots, improvements in anodic current density and cathodic hydrogen recovery are required for practical application.