3d打印cqd增强铜复合材料:制备及其光催化特性

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Han Lai, Wenwen Sun, Yang Zhao, Xin Ban, Jiamu Li, Aijia Sun, Huayi Li, Zhengchun Yang, Peng Pan, Jie He, Rui Zhang
{"title":"3d打印cqd增强铜复合材料:制备及其光催化特性","authors":"Han Lai,&nbsp;Wenwen Sun,&nbsp;Yang Zhao,&nbsp;Xin Ban,&nbsp;Jiamu Li,&nbsp;Aijia Sun,&nbsp;Huayi Li,&nbsp;Zhengchun Yang,&nbsp;Peng Pan,&nbsp;Jie He,&nbsp;Rui Zhang","doi":"10.1016/j.physb.2025.417593","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we fabricated carbon quantum dot (CQD)-modified Cu/Cu<sub>x</sub>O hybrid photocatalysts via direct-writing 3D printing. Characterization confirmed uniform CQD dispersion on the material surface. The CQD-Cu/Cu<sub>x</sub>O composite exhibited exceptional photocatalytic activity, degrading 94.1 % of methyl orange (MO) within 150 min (absorbance drop: 1.2669 → 0.0742) under visible light—significantly outperforming the CQD-free counterpart (62.3 % degradation) with a 31.8 % enhancement. This improvement stems from synergistic mechanisms: (1) CQDs broaden visible-light absorption and promote photogenerated charge separation to boost quantum efficiency, and (2) π-π interactions between CQDs’ aromatic structure and MO enhance dye adsorption. The 3D-printed catalyst retained 80.8 % efficiency over four reuse cycles, demonstrating superior recoverability while mitigating recyclability challenges and secondary pollution risks. This work pioneers CQD integration in 3D-printed Cu-based composites for sustainable, high-performance photocatalytic wastewater treatment.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"715 ","pages":"Article 417593"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-printed CQD-reinforced copper composites: Preparation and photocatalytic characteristics\",\"authors\":\"Han Lai,&nbsp;Wenwen Sun,&nbsp;Yang Zhao,&nbsp;Xin Ban,&nbsp;Jiamu Li,&nbsp;Aijia Sun,&nbsp;Huayi Li,&nbsp;Zhengchun Yang,&nbsp;Peng Pan,&nbsp;Jie He,&nbsp;Rui Zhang\",\"doi\":\"10.1016/j.physb.2025.417593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we fabricated carbon quantum dot (CQD)-modified Cu/Cu<sub>x</sub>O hybrid photocatalysts via direct-writing 3D printing. Characterization confirmed uniform CQD dispersion on the material surface. The CQD-Cu/Cu<sub>x</sub>O composite exhibited exceptional photocatalytic activity, degrading 94.1 % of methyl orange (MO) within 150 min (absorbance drop: 1.2669 → 0.0742) under visible light—significantly outperforming the CQD-free counterpart (62.3 % degradation) with a 31.8 % enhancement. This improvement stems from synergistic mechanisms: (1) CQDs broaden visible-light absorption and promote photogenerated charge separation to boost quantum efficiency, and (2) π-π interactions between CQDs’ aromatic structure and MO enhance dye adsorption. The 3D-printed catalyst retained 80.8 % efficiency over four reuse cycles, demonstrating superior recoverability while mitigating recyclability challenges and secondary pollution risks. This work pioneers CQD integration in 3D-printed Cu-based composites for sustainable, high-performance photocatalytic wastewater treatment.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"715 \",\"pages\":\"Article 417593\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625007100\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625007100","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们通过直写3D打印制备了碳量子点(CQD)修饰的Cu/CuxO杂化光催化剂。表征证实CQD在材料表面均匀分散。CQD-Cu/CuxO复合材料表现出优异的光催化活性,在可见光下150 min内降解了94.1%的甲基橙(MO)(吸光度下降:1.2669→0.0742),显著优于无cqd的复合材料(降解率为62.3%),提高了31.8%。这种改善源于协同机制:(1)CQDs扩大可见光吸收并促进光生电荷分离以提高量子效率;(2)CQDs的芳香结构与MO之间的π-π相互作用增强了染料吸附。3d打印的催化剂在四次重复使用循环中保持了80.8%的效率,展示了卓越的可回收性,同时减轻了可回收性挑战和二次污染风险。这项工作开创了3d打印铜基复合材料的CQD集成,用于可持续的高性能光催化废水处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D-printed CQD-reinforced copper composites: Preparation and photocatalytic characteristics
In this study, we fabricated carbon quantum dot (CQD)-modified Cu/CuxO hybrid photocatalysts via direct-writing 3D printing. Characterization confirmed uniform CQD dispersion on the material surface. The CQD-Cu/CuxO composite exhibited exceptional photocatalytic activity, degrading 94.1 % of methyl orange (MO) within 150 min (absorbance drop: 1.2669 → 0.0742) under visible light—significantly outperforming the CQD-free counterpart (62.3 % degradation) with a 31.8 % enhancement. This improvement stems from synergistic mechanisms: (1) CQDs broaden visible-light absorption and promote photogenerated charge separation to boost quantum efficiency, and (2) π-π interactions between CQDs’ aromatic structure and MO enhance dye adsorption. The 3D-printed catalyst retained 80.8 % efficiency over four reuse cycles, demonstrating superior recoverability while mitigating recyclability challenges and secondary pollution risks. This work pioneers CQD integration in 3D-printed Cu-based composites for sustainable, high-performance photocatalytic wastewater treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信