马氏体中锰钢加热至临界间区时碳重分布:原位同步加速器XRD研究

R. Surki Aliabad , S. Sadeghpour , P. Karjalainen , J. Kömi , H. Singh , V. Javaheri
{"title":"马氏体中锰钢加热至临界间区时碳重分布:原位同步加速器XRD研究","authors":"R. Surki Aliabad ,&nbsp;S. Sadeghpour ,&nbsp;P. Karjalainen ,&nbsp;J. Kömi ,&nbsp;H. Singh ,&nbsp;V. Javaheri","doi":"10.1016/j.prostr.2025.07.010","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the microstructural evolution and carbon redistribution during the heating stage prior to intercritical annealing treatment (IAT) in a medium manganese steel (MMnS) with the nominal composition of Fe-0.40C-6Mn-2Al-1Si-0.05Nb (wt.%). The material was characterized using high-energy X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The initial microstructure primarily consisted of tempered martensite containing nano-sized plate-like η carbides and 7 vol.% retained austenite (RA) with thicknesses of 10–20 nm and 300 nm in average, respectively. During heating, carbon partitioning caused an increase in carbon content within the RA up to 530 °C, rising from 0.4 wt.% to 1 wt.%. η-carbides initially coarsened and subsequently transformed into cementite with an average diameter of ~20 nm. Above 530 °C, RA began to decompose, resulting in the formation of a pearlite-type microstructure. Concurrently, the carbon content in the remaining RA decreased, facilitating further growth of cementite formed in the earlier stages.</div><div>The microstructure at the onset of IAT at 640 °C consisted of tempered martensite with nano-sized spherical cementite, 9 vol.% RA with &gt;1 wt.% carbon and a small fraction of pearlite-type decomposed RA. The study highlights the complex interplay between carbon redistribution, carbide formation, and RA stability during the heating stage of MMnS and emphasizes the importance of accurately characterizing the initial microstructure to tailor the properties of these advanced high-strength steels.</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"69 ","pages":"Pages 69-75"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Redistribution in a Martensitic Medium Mn Steel During Heating to Intercritical Region: An In-Situ Synchrotron XRD Study\",\"authors\":\"R. Surki Aliabad ,&nbsp;S. Sadeghpour ,&nbsp;P. Karjalainen ,&nbsp;J. Kömi ,&nbsp;H. Singh ,&nbsp;V. Javaheri\",\"doi\":\"10.1016/j.prostr.2025.07.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the microstructural evolution and carbon redistribution during the heating stage prior to intercritical annealing treatment (IAT) in a medium manganese steel (MMnS) with the nominal composition of Fe-0.40C-6Mn-2Al-1Si-0.05Nb (wt.%). The material was characterized using high-energy X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The initial microstructure primarily consisted of tempered martensite containing nano-sized plate-like η carbides and 7 vol.% retained austenite (RA) with thicknesses of 10–20 nm and 300 nm in average, respectively. During heating, carbon partitioning caused an increase in carbon content within the RA up to 530 °C, rising from 0.4 wt.% to 1 wt.%. η-carbides initially coarsened and subsequently transformed into cementite with an average diameter of ~20 nm. Above 530 °C, RA began to decompose, resulting in the formation of a pearlite-type microstructure. Concurrently, the carbon content in the remaining RA decreased, facilitating further growth of cementite formed in the earlier stages.</div><div>The microstructure at the onset of IAT at 640 °C consisted of tempered martensite with nano-sized spherical cementite, 9 vol.% RA with &gt;1 wt.% carbon and a small fraction of pearlite-type decomposed RA. The study highlights the complex interplay between carbon redistribution, carbide formation, and RA stability during the heating stage of MMnS and emphasizes the importance of accurately characterizing the initial microstructure to tailor the properties of these advanced high-strength steels.</div></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":\"69 \",\"pages\":\"Pages 69-75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452321625002343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321625002343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了标称成分为Fe-0.40C-6Mn-2Al-1Si-0.05Nb (wt.%)的中锰钢(MMnS)在临界退火处理(IAT)前加热阶段的显微组织演变和碳重分布。利用高能x射线衍射、扫描电子显微镜和透射电子显微镜对材料进行了表征。初始组织主要是含纳米片状η碳化物的回火马氏体和平均厚度为10 ~ 20 nm和300 nm的残余奥氏体(RA)。在加热过程中,碳分配导致RA内的碳含量增加到530℃,从0.4 wt.%上升到1 wt.%。η-碳化物先粗化后转变为平均直径约20 nm的渗碳体。在530℃以上,RA开始分解,形成珠光体型显微组织。同时,残余RA中的碳含量降低,有利于早期形成的渗碳体的进一步生长。在640℃时,IAT开始时的组织由回火马氏体和纳米球状渗碳体组成,9 vol.% RA和1 wt.%碳,以及少量珠光体型分解RA。该研究强调了MMnS加热阶段碳重分布、碳化物形成和RA稳定性之间复杂的相互作用,并强调了准确表征这些先进高强度钢的初始微观结构的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon Redistribution in a Martensitic Medium Mn Steel During Heating to Intercritical Region: An In-Situ Synchrotron XRD Study
This study investigates the microstructural evolution and carbon redistribution during the heating stage prior to intercritical annealing treatment (IAT) in a medium manganese steel (MMnS) with the nominal composition of Fe-0.40C-6Mn-2Al-1Si-0.05Nb (wt.%). The material was characterized using high-energy X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The initial microstructure primarily consisted of tempered martensite containing nano-sized plate-like η carbides and 7 vol.% retained austenite (RA) with thicknesses of 10–20 nm and 300 nm in average, respectively. During heating, carbon partitioning caused an increase in carbon content within the RA up to 530 °C, rising from 0.4 wt.% to 1 wt.%. η-carbides initially coarsened and subsequently transformed into cementite with an average diameter of ~20 nm. Above 530 °C, RA began to decompose, resulting in the formation of a pearlite-type microstructure. Concurrently, the carbon content in the remaining RA decreased, facilitating further growth of cementite formed in the earlier stages.
The microstructure at the onset of IAT at 640 °C consisted of tempered martensite with nano-sized spherical cementite, 9 vol.% RA with >1 wt.% carbon and a small fraction of pearlite-type decomposed RA. The study highlights the complex interplay between carbon redistribution, carbide formation, and RA stability during the heating stage of MMnS and emphasizes the importance of accurately characterizing the initial microstructure to tailor the properties of these advanced high-strength steels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信