飞秒激光冲击强化TiNbZrSn生物相容性形状记忆合金的功能疲劳性能

Muhammad Asim , Wael Abuzaid , Faisal Mustafa , Ali S. Alnaser
{"title":"飞秒激光冲击强化TiNbZrSn生物相容性形状记忆合金的功能疲劳性能","authors":"Muhammad Asim ,&nbsp;Wael Abuzaid ,&nbsp;Faisal Mustafa ,&nbsp;Ali S. Alnaser","doi":"10.1016/j.prostr.2025.07.006","DOIUrl":null,"url":null,"abstract":"<div><div>Shape memory alloys are among the most promising materials for the biomedical industry due to their superelasticity and shape memory effect. NiTi has been widely utilized in such applications. However, the toxicity associated with the release of Ni ions may lead to health hazards. Therefore, TiNbZrSn alloys are potential candidate materials to replace NiTi owing to their biocompatibility and superelasticity. The limitation of TiNbZrSn alloys is the functional fatigue response and the degradation of superelastic properties upon cyclic loading. This study aims to improve the functional fatigue response of the TiNbZrSn alloy via novel femtosecond Laser Shock Peening (LSP). The results depict great potential with up to 12% improvement in the superelastic recovery of strains and hindering the accumulation of plastic strains during cyclic loading with minimal surface damage.</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"69 ","pages":"Pages 41-46"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the functional fatigue properties of TiNbZrSn biocompatible Shape memory alloy through femtosecond laser shock peening\",\"authors\":\"Muhammad Asim ,&nbsp;Wael Abuzaid ,&nbsp;Faisal Mustafa ,&nbsp;Ali S. Alnaser\",\"doi\":\"10.1016/j.prostr.2025.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Shape memory alloys are among the most promising materials for the biomedical industry due to their superelasticity and shape memory effect. NiTi has been widely utilized in such applications. However, the toxicity associated with the release of Ni ions may lead to health hazards. Therefore, TiNbZrSn alloys are potential candidate materials to replace NiTi owing to their biocompatibility and superelasticity. The limitation of TiNbZrSn alloys is the functional fatigue response and the degradation of superelastic properties upon cyclic loading. This study aims to improve the functional fatigue response of the TiNbZrSn alloy via novel femtosecond Laser Shock Peening (LSP). The results depict great potential with up to 12% improvement in the superelastic recovery of strains and hindering the accumulation of plastic strains during cyclic loading with minimal surface damage.</div></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":\"69 \",\"pages\":\"Pages 41-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452321625002306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321625002306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

形状记忆合金因其超弹性和形状记忆效应而成为生物医学领域最有前途的材料之一。NiTi在这类应用中得到了广泛的应用。然而,与Ni离子释放相关的毒性可能导致健康危害。因此,TiNbZrSn合金具有良好的生物相容性和超弹性,是替代NiTi的潜在候选材料。TiNbZrSn合金在循环载荷作用下的功能疲劳响应和超弹性性能退化是其局限性。本研究旨在通过新型飞秒激光冲击强化(LSP)提高TiNbZrSn合金的功能性疲劳响应。结果显示,在循环加载过程中,在最小表面损伤的情况下,应变的超弹性恢复提高了12%,并阻碍了塑性应变的积累,这是一个巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the functional fatigue properties of TiNbZrSn biocompatible Shape memory alloy through femtosecond laser shock peening
Shape memory alloys are among the most promising materials for the biomedical industry due to their superelasticity and shape memory effect. NiTi has been widely utilized in such applications. However, the toxicity associated with the release of Ni ions may lead to health hazards. Therefore, TiNbZrSn alloys are potential candidate materials to replace NiTi owing to their biocompatibility and superelasticity. The limitation of TiNbZrSn alloys is the functional fatigue response and the degradation of superelastic properties upon cyclic loading. This study aims to improve the functional fatigue response of the TiNbZrSn alloy via novel femtosecond Laser Shock Peening (LSP). The results depict great potential with up to 12% improvement in the superelastic recovery of strains and hindering the accumulation of plastic strains during cyclic loading with minimal surface damage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信