形状记忆合金基活性复合材料气动载荷下的实验性能评价

Stefano Rodinò , Elio Matteo Curcio , Diego Perrone , Teresa Castiglione , Carmine Maletta
{"title":"形状记忆合金基活性复合材料气动载荷下的实验性能评价","authors":"Stefano Rodinò ,&nbsp;Elio Matteo Curcio ,&nbsp;Diego Perrone ,&nbsp;Teresa Castiglione ,&nbsp;Carmine Maletta","doi":"10.1016/j.prostr.2025.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an experimental investigation of a novel shape memory alloy (SMA)-based active composite designed for aerodynamic applications. The research addresses critical interface challenges in SMA-polymer composites through an innovative multi-material architecture incorporating a high-temperature silicone matrix and PC/ABS structural layer. Systematic wind tunnel experiments characterized the shape morphing capabilities under various aerodynamic loading conditions, with flow velocities ranging from 0 to 125 km/h. The experimental results demonstrate robust morphing performance, achieving a maximum deflection of 52 mm under static conditions and maintaining 60% of this capability (31.6 mm) at maximum flow velocity. The composite’s deformation profiles exhibit nonlinear behavior with increasing aerodynamic loads while preserving consistent actuation characteristics across all test conditions. This stability is attributed to the strategic integration of compliant and structural layers, effectively addressing previously reported interface limitations. The findings validate the effectiveness of the proposed material architecture for active aerodynamic components, particularly in automotive applications requiring reliable performance under varied operating conditions. The experimental characterization provides valuable insights for future development of adaptive structures, establishing a foundation for optimizing geometric and material parameters in SMA-based active composites.</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"69 ","pages":"Pages 20-25"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Performance Evaluation of Shape Memory Alloy-Based Active Composites Under Aerodynamic Loading\",\"authors\":\"Stefano Rodinò ,&nbsp;Elio Matteo Curcio ,&nbsp;Diego Perrone ,&nbsp;Teresa Castiglione ,&nbsp;Carmine Maletta\",\"doi\":\"10.1016/j.prostr.2025.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an experimental investigation of a novel shape memory alloy (SMA)-based active composite designed for aerodynamic applications. The research addresses critical interface challenges in SMA-polymer composites through an innovative multi-material architecture incorporating a high-temperature silicone matrix and PC/ABS structural layer. Systematic wind tunnel experiments characterized the shape morphing capabilities under various aerodynamic loading conditions, with flow velocities ranging from 0 to 125 km/h. The experimental results demonstrate robust morphing performance, achieving a maximum deflection of 52 mm under static conditions and maintaining 60% of this capability (31.6 mm) at maximum flow velocity. The composite’s deformation profiles exhibit nonlinear behavior with increasing aerodynamic loads while preserving consistent actuation characteristics across all test conditions. This stability is attributed to the strategic integration of compliant and structural layers, effectively addressing previously reported interface limitations. The findings validate the effectiveness of the proposed material architecture for active aerodynamic components, particularly in automotive applications requiring reliable performance under varied operating conditions. The experimental characterization provides valuable insights for future development of adaptive structures, establishing a foundation for optimizing geometric and material parameters in SMA-based active composites.</div></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":\"69 \",\"pages\":\"Pages 20-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452321625002276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321625002276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于形状记忆合金(SMA)的新型气动主动复合材料。该研究通过将高温硅树脂基体和PC/ABS结构层结合在一起的创新多材料架构解决了sma -聚合物复合材料的关键界面挑战。在0 ~ 125 km/h的不同气动载荷条件下,通过系统的风洞实验,对其外形变形能力进行了表征。实验结果显示了强大的变形性能,在静态条件下实现了52毫米的最大挠度,并在最大流速下保持了60%的变形能力(31.6毫米)。随着气动载荷的增加,复合材料的变形曲线呈现出非线性行为,同时在所有测试条件下保持一致的驱动特性。这种稳定性归功于兼容层和结构层的战略性集成,有效地解决了先前报道的接口限制。研究结果验证了所提出的主动气动元件材料结构的有效性,特别是在需要在不同操作条件下可靠性能的汽车应用中。实验表征为自适应结构的未来发展提供了有价值的见解,为优化sma基活性复合材料的几何和材料参数奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Performance Evaluation of Shape Memory Alloy-Based Active Composites Under Aerodynamic Loading
This study presents an experimental investigation of a novel shape memory alloy (SMA)-based active composite designed for aerodynamic applications. The research addresses critical interface challenges in SMA-polymer composites through an innovative multi-material architecture incorporating a high-temperature silicone matrix and PC/ABS structural layer. Systematic wind tunnel experiments characterized the shape morphing capabilities under various aerodynamic loading conditions, with flow velocities ranging from 0 to 125 km/h. The experimental results demonstrate robust morphing performance, achieving a maximum deflection of 52 mm under static conditions and maintaining 60% of this capability (31.6 mm) at maximum flow velocity. The composite’s deformation profiles exhibit nonlinear behavior with increasing aerodynamic loads while preserving consistent actuation characteristics across all test conditions. This stability is attributed to the strategic integration of compliant and structural layers, effectively addressing previously reported interface limitations. The findings validate the effectiveness of the proposed material architecture for active aerodynamic components, particularly in automotive applications requiring reliable performance under varied operating conditions. The experimental characterization provides valuable insights for future development of adaptive structures, establishing a foundation for optimizing geometric and material parameters in SMA-based active composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信