{"title":"里奇不变量的多项式退化与时空奇点","authors":"Soumya Chakrabarti","doi":"10.1016/j.physletb.2025.139712","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the connection of a general relativistic matter-energy momentum tensor with the polynomial degeneracies of curvature invariants defined in Riemannian geometry. The degeneracies enforce additional constraints on the energy-momentum tensor components. Due to these constraints the formation of a curvature singularity, for instance during a gravitational collapse can no longer be treated as inevitable. We find that there can be a formation of singularity iff the interior fluid evolves into (<em>i</em>) a pressure-less dust, <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></math></span> an isotropic sphere or <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></math></span> a distribution with negative pressure.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"868 ","pages":"Article 139712"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the polynomial degeneracy of Ricci invariants and spacetime singularity\",\"authors\":\"Soumya Chakrabarti\",\"doi\":\"10.1016/j.physletb.2025.139712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We explore the connection of a general relativistic matter-energy momentum tensor with the polynomial degeneracies of curvature invariants defined in Riemannian geometry. The degeneracies enforce additional constraints on the energy-momentum tensor components. Due to these constraints the formation of a curvature singularity, for instance during a gravitational collapse can no longer be treated as inevitable. We find that there can be a formation of singularity iff the interior fluid evolves into (<em>i</em>) a pressure-less dust, <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></math></span> an isotropic sphere or <span><math><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></math></span> a distribution with negative pressure.</div></div>\",\"PeriodicalId\":20162,\"journal\":{\"name\":\"Physics Letters B\",\"volume\":\"868 \",\"pages\":\"Article 139712\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370269325004733\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325004733","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
On the polynomial degeneracy of Ricci invariants and spacetime singularity
We explore the connection of a general relativistic matter-energy momentum tensor with the polynomial degeneracies of curvature invariants defined in Riemannian geometry. The degeneracies enforce additional constraints on the energy-momentum tensor components. Due to these constraints the formation of a curvature singularity, for instance during a gravitational collapse can no longer be treated as inevitable. We find that there can be a formation of singularity iff the interior fluid evolves into (i) a pressure-less dust, an isotropic sphere or a distribution with negative pressure.
期刊介绍:
Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.