利用分布式声传感和环境噪声层析成像技术表征浅层岩溶带——以木府山为例

IF 8.4 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Haiyang Liao , Dan Zhang , Zhengyu Qian , Tao Wang , Bin Shi , Hasanjan Yimit , Qi Luo
{"title":"利用分布式声传感和环境噪声层析成像技术表征浅层岩溶带——以木府山为例","authors":"Haiyang Liao ,&nbsp;Dan Zhang ,&nbsp;Zhengyu Qian ,&nbsp;Tao Wang ,&nbsp;Bin Shi ,&nbsp;Hasanjan Yimit ,&nbsp;Qi Luo","doi":"10.1016/j.enggeo.2025.108223","DOIUrl":null,"url":null,"abstract":"<div><div>Karst regions pose significant challenges for underground engineering due to their intricate subsurface structures. Accurately imaging these shallow subsurface areas is important for ensuring the safety and stability of construction projects. In the Mufu Mountain region of Nanjing, China, we applied fiber-optic distributed acoustic sensing (DAS) technology to detect karst fracture zones through ambient noise tomography. Our 24-h ambient noise data analysis elucidates urban noise patterns, providing a robust foundation for short-term engineering applications using ambient noise tomography. This method utilized high-density seismic data recorded over a period of 7 h. Phase-velocity dispersion curves of Rayleigh waves, extracted from spectrograms computed using the frequency-Bessel (F-J) method from ambient noise, were subsequently inverted with the competitive particle swarm optimization (CPSO) algorithm to construct a detailed 2D S-wave velocity profile down to 80 m. The analysis revealed complex subsurface features, including stratigraphic conditions and karst formations, which aligned with borehole data. This non-invasive and cost-effective methodology highlights the potential of DAS technology for high-resolution urban subsurface imaging, offering significant benefits for geological assessments, urban planning, and infrastructure monitoring in complex environments.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"355 ","pages":"Article 108223"},"PeriodicalIF":8.4000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of shallow karst zones using distributed acoustic sensing and ambient noise tomography: A case study in Mufu Mountain, China\",\"authors\":\"Haiyang Liao ,&nbsp;Dan Zhang ,&nbsp;Zhengyu Qian ,&nbsp;Tao Wang ,&nbsp;Bin Shi ,&nbsp;Hasanjan Yimit ,&nbsp;Qi Luo\",\"doi\":\"10.1016/j.enggeo.2025.108223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Karst regions pose significant challenges for underground engineering due to their intricate subsurface structures. Accurately imaging these shallow subsurface areas is important for ensuring the safety and stability of construction projects. In the Mufu Mountain region of Nanjing, China, we applied fiber-optic distributed acoustic sensing (DAS) technology to detect karst fracture zones through ambient noise tomography. Our 24-h ambient noise data analysis elucidates urban noise patterns, providing a robust foundation for short-term engineering applications using ambient noise tomography. This method utilized high-density seismic data recorded over a period of 7 h. Phase-velocity dispersion curves of Rayleigh waves, extracted from spectrograms computed using the frequency-Bessel (F-J) method from ambient noise, were subsequently inverted with the competitive particle swarm optimization (CPSO) algorithm to construct a detailed 2D S-wave velocity profile down to 80 m. The analysis revealed complex subsurface features, including stratigraphic conditions and karst formations, which aligned with borehole data. This non-invasive and cost-effective methodology highlights the potential of DAS technology for high-resolution urban subsurface imaging, offering significant benefits for geological assessments, urban planning, and infrastructure monitoring in complex environments.</div></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"355 \",\"pages\":\"Article 108223\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795225003199\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225003199","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

岩溶地区由于其复杂的地下结构,给地下工程带来了巨大的挑战。这些浅层地下区域的准确成像对于保证建设工程的安全稳定具有重要意义。在南京木府山地区,应用光纤分布式声传感(DAS)技术,通过环境噪声层摄影技术探测岩溶裂缝带。我们的24小时环境噪声数据分析阐明了城市噪声模式,为使用环境噪声层析成像的短期工程应用提供了坚实的基础。该方法利用高密度地震数据,记录时间超过7小时。从环境噪声中使用频率-贝塞尔(F-J)方法计算的频谱图中提取瑞利波的相速度频散曲线,随后使用竞争粒子群优化(CPSO)算法进行反演,以构建80 m以下的详细二维s波速度剖面。分析揭示了复杂的地下特征,包括地层条件和岩溶地层,这些特征与钻孔数据一致。这种非侵入性和经济高效的方法突出了DAS技术在高分辨率城市地下成像方面的潜力,为复杂环境下的地质评估、城市规划和基础设施监测提供了显著的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of shallow karst zones using distributed acoustic sensing and ambient noise tomography: A case study in Mufu Mountain, China
Karst regions pose significant challenges for underground engineering due to their intricate subsurface structures. Accurately imaging these shallow subsurface areas is important for ensuring the safety and stability of construction projects. In the Mufu Mountain region of Nanjing, China, we applied fiber-optic distributed acoustic sensing (DAS) technology to detect karst fracture zones through ambient noise tomography. Our 24-h ambient noise data analysis elucidates urban noise patterns, providing a robust foundation for short-term engineering applications using ambient noise tomography. This method utilized high-density seismic data recorded over a period of 7 h. Phase-velocity dispersion curves of Rayleigh waves, extracted from spectrograms computed using the frequency-Bessel (F-J) method from ambient noise, were subsequently inverted with the competitive particle swarm optimization (CPSO) algorithm to construct a detailed 2D S-wave velocity profile down to 80 m. The analysis revealed complex subsurface features, including stratigraphic conditions and karst formations, which aligned with borehole data. This non-invasive and cost-effective methodology highlights the potential of DAS technology for high-resolution urban subsurface imaging, offering significant benefits for geological assessments, urban planning, and infrastructure monitoring in complex environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信