永磁液滴衍生微型机器人

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuanxiong Cao, Ruoxiao Xie, Philipp W. A. Schönhöfer, Ross Burdis, Richard Wang, Rujie Sun, Kai Xie, Jiawen Zou, Xin Song, Qiao You Lau, Junliang Lin, Jang Ah Kim, Dimitar Georgiev, Jiyuan Tang, Ho-Cheung Ng, Olga Bibikova, Yuyang Zuo, Xiangrong L. Lu, Sharon C. Glotzer, Molly M. Stevens
{"title":"永磁液滴衍生微型机器人","authors":"Yuanxiong Cao,&nbsp;Ruoxiao Xie,&nbsp;Philipp W. A. Schönhöfer,&nbsp;Ross Burdis,&nbsp;Richard Wang,&nbsp;Rujie Sun,&nbsp;Kai Xie,&nbsp;Jiawen Zou,&nbsp;Xin Song,&nbsp;Qiao You Lau,&nbsp;Junliang Lin,&nbsp;Jang Ah Kim,&nbsp;Dimitar Georgiev,&nbsp;Jiyuan Tang,&nbsp;Ho-Cheung Ng,&nbsp;Olga Bibikova,&nbsp;Yuyang Zuo,&nbsp;Xiangrong L. Lu,&nbsp;Sharon C. Glotzer,&nbsp;Molly M. Stevens","doi":"10.1126/sciadv.adw3172","DOIUrl":null,"url":null,"abstract":"<div >Microrobots hold substantial potential for precision medicine. However, challenges remain in balancing multifunctional cargo loading with efficient locomotion and in predicting behavior in complex biological environments. Here, we present permanent magnetic droplet–derived microrobots (PMDMs) with superior cargo loading capacity and dynamic locomotion capabilities. Produced rapidly via cascade tubing microfluidics, PMDMs can self-assemble, disassemble, and reassemble into chains that autonomously switch among four locomotion modes—walking, crawling, swinging, and lateral movement. Their reconfigurable design allows navigation through complex and constrained biomimetic environments, including obstacle negotiation and stair climbing with record speed at the submillimeter scale. We also developed a molecular dynamics–based computational platform that predicts PMDM assembly and motion. PMDMs demonstrated precise, programmable cargo delivery (e.g., drugs and cells) with postdelivery retrieval. These results establish a physical and in silico foundation for future microrobot design and represent a key step toward clinical translation.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 28","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw3172","citationCount":"0","resultStr":"{\"title\":\"Permanent magnetic droplet–derived microrobots\",\"authors\":\"Yuanxiong Cao,&nbsp;Ruoxiao Xie,&nbsp;Philipp W. A. Schönhöfer,&nbsp;Ross Burdis,&nbsp;Richard Wang,&nbsp;Rujie Sun,&nbsp;Kai Xie,&nbsp;Jiawen Zou,&nbsp;Xin Song,&nbsp;Qiao You Lau,&nbsp;Junliang Lin,&nbsp;Jang Ah Kim,&nbsp;Dimitar Georgiev,&nbsp;Jiyuan Tang,&nbsp;Ho-Cheung Ng,&nbsp;Olga Bibikova,&nbsp;Yuyang Zuo,&nbsp;Xiangrong L. Lu,&nbsp;Sharon C. Glotzer,&nbsp;Molly M. Stevens\",\"doi\":\"10.1126/sciadv.adw3172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Microrobots hold substantial potential for precision medicine. However, challenges remain in balancing multifunctional cargo loading with efficient locomotion and in predicting behavior in complex biological environments. Here, we present permanent magnetic droplet–derived microrobots (PMDMs) with superior cargo loading capacity and dynamic locomotion capabilities. Produced rapidly via cascade tubing microfluidics, PMDMs can self-assemble, disassemble, and reassemble into chains that autonomously switch among four locomotion modes—walking, crawling, swinging, and lateral movement. Their reconfigurable design allows navigation through complex and constrained biomimetic environments, including obstacle negotiation and stair climbing with record speed at the submillimeter scale. We also developed a molecular dynamics–based computational platform that predicts PMDM assembly and motion. PMDMs demonstrated precise, programmable cargo delivery (e.g., drugs and cells) with postdelivery retrieval. These results establish a physical and in silico foundation for future microrobot design and represent a key step toward clinical translation.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 28\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw3172\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw3172\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw3172","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微型机器人在精准医疗方面具有巨大的潜力。然而,在平衡多功能货物装载与有效运动以及预测复杂生物环境中的行为方面仍然存在挑战。在这里,我们提出永磁液滴衍生的微型机器人(PMDMs)具有优越的货物装载能力和动态运动能力。通过级联油管微流体快速生产,pmdm可以自组装、拆卸和重新组装成链,并在四种运动模式(行走、爬行、摆动和横向运动)之间自主切换。它们的可重构设计允许在复杂和受限的仿生环境中导航,包括以亚毫米级的创纪录速度通过障碍和爬楼梯。我们还开发了一个基于分子动力学的计算平台来预测PMDM的组装和运动。PMDMs展示了精确的、可编程的货物交付(例如,药物和细胞),并具有交付后的检索功能。这些结果为未来的微型机器人设计奠定了物理和计算机基础,并代表了临床转化的关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Permanent magnetic droplet–derived microrobots

Permanent magnetic droplet–derived microrobots
Microrobots hold substantial potential for precision medicine. However, challenges remain in balancing multifunctional cargo loading with efficient locomotion and in predicting behavior in complex biological environments. Here, we present permanent magnetic droplet–derived microrobots (PMDMs) with superior cargo loading capacity and dynamic locomotion capabilities. Produced rapidly via cascade tubing microfluidics, PMDMs can self-assemble, disassemble, and reassemble into chains that autonomously switch among four locomotion modes—walking, crawling, swinging, and lateral movement. Their reconfigurable design allows navigation through complex and constrained biomimetic environments, including obstacle negotiation and stair climbing with record speed at the submillimeter scale. We also developed a molecular dynamics–based computational platform that predicts PMDM assembly and motion. PMDMs demonstrated precise, programmable cargo delivery (e.g., drugs and cells) with postdelivery retrieval. These results establish a physical and in silico foundation for future microrobot design and represent a key step toward clinical translation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信