Ana Rita Costa, Daan F. van den Berg, Jelger Q. Esser, Halewijn van den Bossche, Nadiia Pozhydaieva, Konstantinos Kalogeropoulos, Stan J.J. Brouns
{"title":"噬菌体基因组编码广泛和特定的反防御谱以克服细菌防御系统","authors":"Ana Rita Costa, Daan F. van den Berg, Jelger Q. Esser, Halewijn van den Bossche, Nadiia Pozhydaieva, Konstantinos Kalogeropoulos, Stan J.J. Brouns","doi":"10.1016/j.chom.2025.06.010","DOIUrl":null,"url":null,"abstract":"The evolutionary arms race between bacteria and bacteriophages drives rapid evolution of bacterial defense mechanisms with scattered distribution across genomes. We hypothesized that this variability in bacterial defense systems leads to equally variable counter-defense repertoires in phage genomes. Examining the variable regions in <em>Pseudomonas</em> model phages of the <em>Pbunavirus</em> genus revealed five anti-defense genes, including one inhibiting Druantia type III named DadIII-1, another targeting Thoeris type III named TadIII-1, one inhibiting Zorya type I named ZadI-1, and two related broad defense inhibitors named Bdi1 and Bdi2 targeting four defenses. A typical <em>Pbunavirus</em> encodes up to five known anti-defense genes, some inhibiting four unrelated defense systems with distinct nucleic-acid-targeting mechanisms. Structural homologs of broad-acting Bdi1 and Bdi2 are encoded across diverse phage taxa infecting multiple bacterial hosts. These findings show that phages face a variety of bacterial defenses, driving them to evolve both specific and general strategies to overcome these barriers.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"13 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacteriophage genomes encode both broad and specific counter-defense repertoires to overcome bacterial defense systems\",\"authors\":\"Ana Rita Costa, Daan F. van den Berg, Jelger Q. Esser, Halewijn van den Bossche, Nadiia Pozhydaieva, Konstantinos Kalogeropoulos, Stan J.J. Brouns\",\"doi\":\"10.1016/j.chom.2025.06.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolutionary arms race between bacteria and bacteriophages drives rapid evolution of bacterial defense mechanisms with scattered distribution across genomes. We hypothesized that this variability in bacterial defense systems leads to equally variable counter-defense repertoires in phage genomes. Examining the variable regions in <em>Pseudomonas</em> model phages of the <em>Pbunavirus</em> genus revealed five anti-defense genes, including one inhibiting Druantia type III named DadIII-1, another targeting Thoeris type III named TadIII-1, one inhibiting Zorya type I named ZadI-1, and two related broad defense inhibitors named Bdi1 and Bdi2 targeting four defenses. A typical <em>Pbunavirus</em> encodes up to five known anti-defense genes, some inhibiting four unrelated defense systems with distinct nucleic-acid-targeting mechanisms. Structural homologs of broad-acting Bdi1 and Bdi2 are encoded across diverse phage taxa infecting multiple bacterial hosts. These findings show that phages face a variety of bacterial defenses, driving them to evolve both specific and general strategies to overcome these barriers.\",\"PeriodicalId\":9693,\"journal\":{\"name\":\"Cell host & microbe\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell host & microbe\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chom.2025.06.010\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.chom.2025.06.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Bacteriophage genomes encode both broad and specific counter-defense repertoires to overcome bacterial defense systems
The evolutionary arms race between bacteria and bacteriophages drives rapid evolution of bacterial defense mechanisms with scattered distribution across genomes. We hypothesized that this variability in bacterial defense systems leads to equally variable counter-defense repertoires in phage genomes. Examining the variable regions in Pseudomonas model phages of the Pbunavirus genus revealed five anti-defense genes, including one inhibiting Druantia type III named DadIII-1, another targeting Thoeris type III named TadIII-1, one inhibiting Zorya type I named ZadI-1, and two related broad defense inhibitors named Bdi1 and Bdi2 targeting four defenses. A typical Pbunavirus encodes up to five known anti-defense genes, some inhibiting four unrelated defense systems with distinct nucleic-acid-targeting mechanisms. Structural homologs of broad-acting Bdi1 and Bdi2 are encoded across diverse phage taxa infecting multiple bacterial hosts. These findings show that phages face a variety of bacterial defenses, driving them to evolve both specific and general strategies to overcome these barriers.
期刊介绍:
Cell Host & Microbe is a scientific journal that was launched in March 2007. The journal aims to provide a platform for scientists to exchange ideas and concepts related to the study of microbes and their interaction with host organisms at a molecular, cellular, and immune level. It publishes novel findings on a wide range of microorganisms including bacteria, fungi, parasites, and viruses. The journal focuses on the interface between the microbe and its host, whether the host is a vertebrate, invertebrate, or plant, and whether the microbe is pathogenic, non-pathogenic, or commensal. The integrated study of microbes and their interactions with each other, their host, and the cellular environment they inhabit is a unifying theme of the journal. The published work in Cell Host & Microbe is expected to be of exceptional significance within its field and also of interest to researchers in other areas. In addition to primary research articles, the journal features expert analysis, commentary, and reviews on current topics of interest in the field.