Pierre Hamonic, Martin Nurizzo, Jayshankar Nath, Matthieu C. Dartiailh, Victor Elhomsy, Mathis Fragnol, Biel Martinez, Pierre-Louis Julliard, Bruna Cardoso Paz, Mathilde Ouvrier-Buffet, Jean-Baptiste Filippini, Benoit Bertrand, Heimanu Niebojewski, Christopher Bäuerle, Maud Vinet, Franck Balestro, Tristan Meunier, Matias Urdampilleta
{"title":"结合多路门读出和隔离CMOS量子点阵列","authors":"Pierre Hamonic, Martin Nurizzo, Jayshankar Nath, Matthieu C. Dartiailh, Victor Elhomsy, Mathis Fragnol, Biel Martinez, Pierre-Louis Julliard, Bruna Cardoso Paz, Mathilde Ouvrier-Buffet, Jean-Baptiste Filippini, Benoit Bertrand, Heimanu Niebojewski, Christopher Bäuerle, Maud Vinet, Franck Balestro, Tristan Meunier, Matias Urdampilleta","doi":"10.1038/s41467-025-61556-w","DOIUrl":null,"url":null,"abstract":"<p>Semiconductor quantum dot arrays are a promising platform to perform spin-based error-corrected quantum computation with large numbers of qubits. However, due to the diverging number of possible charge configurations combined with the limited sensitivity of large-footprint charge sensors, achieving single-spin occupancy in each dot in a growing quantum dot array is exceedingly complex. Therefore, to scale-up a spin-based architecture we must change how individual charges are readout and controlled. Here, we demonstrate single-spin occupancy of each dot in a foundry-fabricated array by combining two methods. 1/ Loading a finite number of electrons into the quantum dot array; simplifying electrostatic tuning by isolating the array from the reservoirs. 2/ Deploying multiplex gate-based reflectometry to dispersively probe charge tunneling and spin states without charge sensors or reservoirs. Our isolated arrays probed by embedded multiplex readout can be readily electrostatically tuned. They are thus a viable, scalable approach for spin-based quantum architectures.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"68 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining multiplexed gate-based readout and isolated CMOS quantum dot arrays\",\"authors\":\"Pierre Hamonic, Martin Nurizzo, Jayshankar Nath, Matthieu C. Dartiailh, Victor Elhomsy, Mathis Fragnol, Biel Martinez, Pierre-Louis Julliard, Bruna Cardoso Paz, Mathilde Ouvrier-Buffet, Jean-Baptiste Filippini, Benoit Bertrand, Heimanu Niebojewski, Christopher Bäuerle, Maud Vinet, Franck Balestro, Tristan Meunier, Matias Urdampilleta\",\"doi\":\"10.1038/s41467-025-61556-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Semiconductor quantum dot arrays are a promising platform to perform spin-based error-corrected quantum computation with large numbers of qubits. However, due to the diverging number of possible charge configurations combined with the limited sensitivity of large-footprint charge sensors, achieving single-spin occupancy in each dot in a growing quantum dot array is exceedingly complex. Therefore, to scale-up a spin-based architecture we must change how individual charges are readout and controlled. Here, we demonstrate single-spin occupancy of each dot in a foundry-fabricated array by combining two methods. 1/ Loading a finite number of electrons into the quantum dot array; simplifying electrostatic tuning by isolating the array from the reservoirs. 2/ Deploying multiplex gate-based reflectometry to dispersively probe charge tunneling and spin states without charge sensors or reservoirs. Our isolated arrays probed by embedded multiplex readout can be readily electrostatically tuned. They are thus a viable, scalable approach for spin-based quantum architectures.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61556-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61556-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Combining multiplexed gate-based readout and isolated CMOS quantum dot arrays
Semiconductor quantum dot arrays are a promising platform to perform spin-based error-corrected quantum computation with large numbers of qubits. However, due to the diverging number of possible charge configurations combined with the limited sensitivity of large-footprint charge sensors, achieving single-spin occupancy in each dot in a growing quantum dot array is exceedingly complex. Therefore, to scale-up a spin-based architecture we must change how individual charges are readout and controlled. Here, we demonstrate single-spin occupancy of each dot in a foundry-fabricated array by combining two methods. 1/ Loading a finite number of electrons into the quantum dot array; simplifying electrostatic tuning by isolating the array from the reservoirs. 2/ Deploying multiplex gate-based reflectometry to dispersively probe charge tunneling and spin states without charge sensors or reservoirs. Our isolated arrays probed by embedded multiplex readout can be readily electrostatically tuned. They are thus a viable, scalable approach for spin-based quantum architectures.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.