Lifeng Chen, M. Julia Maristany, Stephen E. Farr, Jinyue Luo, Bryan A. Gibson, Lynda K. Doolittle, Jorge R. Espinosa, Jan Huertas, Sy Redding, Rosana Collepardo-Guevara, Michael K. Rosen
{"title":"核小体间距可以微调高阶染色质组装","authors":"Lifeng Chen, M. Julia Maristany, Stephen E. Farr, Jinyue Luo, Bryan A. Gibson, Lynda K. Doolittle, Jorge R. Espinosa, Jan Huertas, Sy Redding, Rosana Collepardo-Guevara, Michael K. Rosen","doi":"10.1038/s41467-025-61482-x","DOIUrl":null,"url":null,"abstract":"<p>Cellular chromatin displays heterogeneous structure and dynamics, properties that control diverse nuclear processes. Models invoke phase separation of conformational ensembles of chromatin fibers as a mechanism regulating chromatin organization in vivo. Here we combine biochemistry and molecular dynamics simulations to examine, at single base-pair resolution, how nucleosome spacing controls chromatin phase separation. We show that as DNA linkers extend from 25 bp to 30 bp, as exemplars of 10 N + 5 and 10 N (integer N) bp lengths, chromatin condensates become less thermodynamically stable and nucleosome mobility increases. Simulations reveal that this is due to trade-offs between inter- and intramolecular nucleosome stacking, favored by rigid 10 N + 5 and 10 N bp linkers, respectively. A remodeler can induce or inhibit phase separation by moving nucleosomes, changing the balance between intra- and intermolecular stacking. The intrinsic phase separation capacity of chromatin enables fine tuning of compaction and dynamics, likely contributing to heterogeneous chromatin organization in vivo.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"28 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nucleosome spacing can fine-tune higher-order chromatin assembly\",\"authors\":\"Lifeng Chen, M. Julia Maristany, Stephen E. Farr, Jinyue Luo, Bryan A. Gibson, Lynda K. Doolittle, Jorge R. Espinosa, Jan Huertas, Sy Redding, Rosana Collepardo-Guevara, Michael K. Rosen\",\"doi\":\"10.1038/s41467-025-61482-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellular chromatin displays heterogeneous structure and dynamics, properties that control diverse nuclear processes. Models invoke phase separation of conformational ensembles of chromatin fibers as a mechanism regulating chromatin organization in vivo. Here we combine biochemistry and molecular dynamics simulations to examine, at single base-pair resolution, how nucleosome spacing controls chromatin phase separation. We show that as DNA linkers extend from 25 bp to 30 bp, as exemplars of 10 N + 5 and 10 N (integer N) bp lengths, chromatin condensates become less thermodynamically stable and nucleosome mobility increases. Simulations reveal that this is due to trade-offs between inter- and intramolecular nucleosome stacking, favored by rigid 10 N + 5 and 10 N bp linkers, respectively. A remodeler can induce or inhibit phase separation by moving nucleosomes, changing the balance between intra- and intermolecular stacking. The intrinsic phase separation capacity of chromatin enables fine tuning of compaction and dynamics, likely contributing to heterogeneous chromatin organization in vivo.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61482-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61482-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Nucleosome spacing can fine-tune higher-order chromatin assembly
Cellular chromatin displays heterogeneous structure and dynamics, properties that control diverse nuclear processes. Models invoke phase separation of conformational ensembles of chromatin fibers as a mechanism regulating chromatin organization in vivo. Here we combine biochemistry and molecular dynamics simulations to examine, at single base-pair resolution, how nucleosome spacing controls chromatin phase separation. We show that as DNA linkers extend from 25 bp to 30 bp, as exemplars of 10 N + 5 and 10 N (integer N) bp lengths, chromatin condensates become less thermodynamically stable and nucleosome mobility increases. Simulations reveal that this is due to trade-offs between inter- and intramolecular nucleosome stacking, favored by rigid 10 N + 5 and 10 N bp linkers, respectively. A remodeler can induce or inhibit phase separation by moving nucleosomes, changing the balance between intra- and intermolecular stacking. The intrinsic phase separation capacity of chromatin enables fine tuning of compaction and dynamics, likely contributing to heterogeneous chromatin organization in vivo.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.