Gege Gui, Molly A. Bingham, Julius R. Herzog, Abigail Wong-Rolle, Laura W. Dillon, Meghali Goswami, Eddie Martin, Jason Reeves, Sean Kim, Arya Bahrami, Hermann F. Degenhardt, George Zaki, Prajan Divakar, Edward C. Schrom, Katherine R. Calvo, Christopher S. Hourigan, Kasper D. Hansen, Chen Zhao
{"title":"单细胞空间转录组学揭示了AML中免疫治疗驱动的骨髓生态位重塑","authors":"Gege Gui, Molly A. Bingham, Julius R. Herzog, Abigail Wong-Rolle, Laura W. Dillon, Meghali Goswami, Eddie Martin, Jason Reeves, Sean Kim, Arya Bahrami, Hermann F. Degenhardt, George Zaki, Prajan Divakar, Edward C. Schrom, Katherine R. Calvo, Christopher S. Hourigan, Kasper D. Hansen, Chen Zhao","doi":"10.1126/sciadv.adw4871","DOIUrl":null,"url":null,"abstract":"<div >Given the graft-versus-leukemia effect observed with allogeneic hematopoietic stem cell transplantation in refractory or relapsed acute myeloid leukemia (AML), immunotherapies have been explored in nontransplant settings. We applied a multiomic approach to examine bone marrow interactions in patients with AML treated with pembrolizumab and decitabine. Using extensively trained nuclear and membrane segmentation models, we achieved precise transcript assignment and deep learning–based image analysis. To address read-depth limitations, we integrated single-cell RNA sequencing with single-cell spatial transcriptomics from the same sample. Quantifying cell-cell distances at the edge level enabled more accurate tumor microenvironment analysis, revealing global and local immune cell enrichment near leukemia cells postpembrolizumab treatment, potentially linked to clinical response. Furthermore, ligand-receptor analysis indicated potential alterations in specific signaling pathways between leukemia and immune cells following immunotherapy treatment. These findings provide insights into immune interactions in AML and may inform therapeutic strategies.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 28","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw4871","citationCount":"0","resultStr":"{\"title\":\"Single-cell spatial transcriptomics reveals immunotherapy-driven bone marrow niche remodeling in AML\",\"authors\":\"Gege Gui, Molly A. Bingham, Julius R. Herzog, Abigail Wong-Rolle, Laura W. Dillon, Meghali Goswami, Eddie Martin, Jason Reeves, Sean Kim, Arya Bahrami, Hermann F. Degenhardt, George Zaki, Prajan Divakar, Edward C. Schrom, Katherine R. Calvo, Christopher S. Hourigan, Kasper D. Hansen, Chen Zhao\",\"doi\":\"10.1126/sciadv.adw4871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Given the graft-versus-leukemia effect observed with allogeneic hematopoietic stem cell transplantation in refractory or relapsed acute myeloid leukemia (AML), immunotherapies have been explored in nontransplant settings. We applied a multiomic approach to examine bone marrow interactions in patients with AML treated with pembrolizumab and decitabine. Using extensively trained nuclear and membrane segmentation models, we achieved precise transcript assignment and deep learning–based image analysis. To address read-depth limitations, we integrated single-cell RNA sequencing with single-cell spatial transcriptomics from the same sample. Quantifying cell-cell distances at the edge level enabled more accurate tumor microenvironment analysis, revealing global and local immune cell enrichment near leukemia cells postpembrolizumab treatment, potentially linked to clinical response. Furthermore, ligand-receptor analysis indicated potential alterations in specific signaling pathways between leukemia and immune cells following immunotherapy treatment. These findings provide insights into immune interactions in AML and may inform therapeutic strategies.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 28\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw4871\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw4871\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw4871","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Single-cell spatial transcriptomics reveals immunotherapy-driven bone marrow niche remodeling in AML
Given the graft-versus-leukemia effect observed with allogeneic hematopoietic stem cell transplantation in refractory or relapsed acute myeloid leukemia (AML), immunotherapies have been explored in nontransplant settings. We applied a multiomic approach to examine bone marrow interactions in patients with AML treated with pembrolizumab and decitabine. Using extensively trained nuclear and membrane segmentation models, we achieved precise transcript assignment and deep learning–based image analysis. To address read-depth limitations, we integrated single-cell RNA sequencing with single-cell spatial transcriptomics from the same sample. Quantifying cell-cell distances at the edge level enabled more accurate tumor microenvironment analysis, revealing global and local immune cell enrichment near leukemia cells postpembrolizumab treatment, potentially linked to clinical response. Furthermore, ligand-receptor analysis indicated potential alterations in specific signaling pathways between leukemia and immune cells following immunotherapy treatment. These findings provide insights into immune interactions in AML and may inform therapeutic strategies.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.