自闭症表型异质性的分解揭示了潜在的遗传程序

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY
Aviya Litman, Natalie Sauerwald, LeeAnne Green Snyder, Jennifer Foss-Feig, Christopher Y. Park, Yun Hao, Ilan Dinstein, Chandra L. Theesfeld, Olga G. Troyanskaya
{"title":"自闭症表型异质性的分解揭示了潜在的遗传程序","authors":"Aviya Litman, Natalie Sauerwald, LeeAnne Green Snyder, Jennifer Foss-Feig, Christopher Y. Park, Yun Hao, Ilan Dinstein, Chandra L. Theesfeld, Olga G. Troyanskaya","doi":"10.1038/s41588-025-02224-z","DOIUrl":null,"url":null,"abstract":"<p>Unraveling the phenotypic and genetic complexity of autism is extremely challenging yet critical for understanding the biology, inheritance, trajectory and clinical manifestations of the many forms of the condition. Using a generative mixture modeling approach, we leverage broad phenotypic data from a large cohort with matched genetics to identify robust, clinically relevant classes of autism and their patterns of core, associated and co-occurring traits, which we further validate and replicate in an independent cohort. We demonstrate that phenotypic and clinical outcomes correspond to genetic and molecular programs of common, de novo and inherited variation and further characterize distinct pathways disrupted by the sets of mutations in each class. Remarkably, we discover that class-specific differences in the developmental timing of affected genes align with clinical outcome differences. These analyses demonstrate the phenotypic complexity of children with autism, identify genetic programs underlying their heterogeneity, and suggest specific biological dysregulation patterns and mechanistic hypotheses.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"135 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition of phenotypic heterogeneity in autism reveals underlying genetic programs\",\"authors\":\"Aviya Litman, Natalie Sauerwald, LeeAnne Green Snyder, Jennifer Foss-Feig, Christopher Y. Park, Yun Hao, Ilan Dinstein, Chandra L. Theesfeld, Olga G. Troyanskaya\",\"doi\":\"10.1038/s41588-025-02224-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Unraveling the phenotypic and genetic complexity of autism is extremely challenging yet critical for understanding the biology, inheritance, trajectory and clinical manifestations of the many forms of the condition. Using a generative mixture modeling approach, we leverage broad phenotypic data from a large cohort with matched genetics to identify robust, clinically relevant classes of autism and their patterns of core, associated and co-occurring traits, which we further validate and replicate in an independent cohort. We demonstrate that phenotypic and clinical outcomes correspond to genetic and molecular programs of common, de novo and inherited variation and further characterize distinct pathways disrupted by the sets of mutations in each class. Remarkably, we discover that class-specific differences in the developmental timing of affected genes align with clinical outcome differences. These analyses demonstrate the phenotypic complexity of children with autism, identify genetic programs underlying their heterogeneity, and suggest specific biological dysregulation patterns and mechanistic hypotheses.</p>\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41588-025-02224-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-025-02224-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

揭示自闭症的表型和遗传复杂性是极具挑战性的,但对于理解这种疾病的多种形式的生物学、遗传、轨迹和临床表现至关重要。使用生成混合建模方法,我们利用来自具有匹配遗传学的大型队列的广泛表型数据来确定稳健的,临床相关的自闭症类别及其核心,相关和共同发生的特征模式,我们进一步验证并在独立队列中重复。我们证明了表型和临床结果与常见、新生和遗传变异的遗传和分子程序相对应,并进一步表征了被每一类突变集破坏的不同途径。值得注意的是,我们发现受影响基因发育时间的类别特异性差异与临床结果差异一致。这些分析证明了自闭症儿童的表型复杂性,确定了其异质性的遗传程序,并提出了特定的生物学失调模式和机制假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Decomposition of phenotypic heterogeneity in autism reveals underlying genetic programs

Decomposition of phenotypic heterogeneity in autism reveals underlying genetic programs

Unraveling the phenotypic and genetic complexity of autism is extremely challenging yet critical for understanding the biology, inheritance, trajectory and clinical manifestations of the many forms of the condition. Using a generative mixture modeling approach, we leverage broad phenotypic data from a large cohort with matched genetics to identify robust, clinically relevant classes of autism and their patterns of core, associated and co-occurring traits, which we further validate and replicate in an independent cohort. We demonstrate that phenotypic and clinical outcomes correspond to genetic and molecular programs of common, de novo and inherited variation and further characterize distinct pathways disrupted by the sets of mutations in each class. Remarkably, we discover that class-specific differences in the developmental timing of affected genes align with clinical outcome differences. These analyses demonstrate the phenotypic complexity of children with autism, identify genetic programs underlying their heterogeneity, and suggest specific biological dysregulation patterns and mechanistic hypotheses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信