高导电性和机械强度纤维素水凝胶由凹凸棒石衍生的硅酸钛制成。

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Miaomiao Wu, Hu Liu, Xiong-Fei Zhang*, Mengjie Li and Jianfeng Yao*, 
{"title":"高导电性和机械强度纤维素水凝胶由凹凸棒石衍生的硅酸钛制成。","authors":"Miaomiao Wu,&nbsp;Hu Liu,&nbsp;Xiong-Fei Zhang*,&nbsp;Mengjie Li and Jianfeng Yao*,&nbsp;","doi":"10.1021/acs.langmuir.5c02530","DOIUrl":null,"url":null,"abstract":"<p >The development of cellulose-based hydrogels with integrated mechanical robustness, ionic conductivity, and environmental tolerance is critical for advancing wearable electronics. Herein, we report a dual-cross-linked cellulose hydrogel reinforced with attapulgite-derived titanium silicate (ATS). An acid-hydrothermal approach was used to transform attapulgite into ATS. ATS has a porous structure with uniform channels, and it can serve as a physical cross-linker to improve the mechanical robustness of the hydrogel. The as-prepared hydrogel demonstrated a high tensile strength (155 kPa), fracture elongation (177%), and compressive stress (0.58 MPa). Simultaneously, the ATS-engineered porous network facilitates rapid ion transport, yielding a high ionic conductivity of 2.45 S m<sup>–1</sup>. When assembled into a strain sensor, the hydrogel can realize the precise detection of human motions. This work provides a sustainable strategy for designing sensors through inorganic filler engineering to tune the mechanical and conductive properties of hydrogels.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 28","pages":"18903–18910"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Conductive and Mechanically Robust Cellulose Hydrogels Enabled by Attapulgite-Derived Titanium Silicate\",\"authors\":\"Miaomiao Wu,&nbsp;Hu Liu,&nbsp;Xiong-Fei Zhang*,&nbsp;Mengjie Li and Jianfeng Yao*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.5c02530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of cellulose-based hydrogels with integrated mechanical robustness, ionic conductivity, and environmental tolerance is critical for advancing wearable electronics. Herein, we report a dual-cross-linked cellulose hydrogel reinforced with attapulgite-derived titanium silicate (ATS). An acid-hydrothermal approach was used to transform attapulgite into ATS. ATS has a porous structure with uniform channels, and it can serve as a physical cross-linker to improve the mechanical robustness of the hydrogel. The as-prepared hydrogel demonstrated a high tensile strength (155 kPa), fracture elongation (177%), and compressive stress (0.58 MPa). Simultaneously, the ATS-engineered porous network facilitates rapid ion transport, yielding a high ionic conductivity of 2.45 S m<sup>–1</sup>. When assembled into a strain sensor, the hydrogel can realize the precise detection of human motions. This work provides a sustainable strategy for designing sensors through inorganic filler engineering to tune the mechanical and conductive properties of hydrogels.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 28\",\"pages\":\"18903–18910\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c02530\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c02530","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纤维素基水凝胶具有综合机械稳健性、离子导电性和环境耐受性,这对于推进可穿戴电子产品至关重要。在此,我们报告了一种双交联纤维素水凝胶与凹凸棒石衍生的硅酸钛(ATS)增强。采用酸-水热法将凹凸棒土转化为ATS。ATS具有孔道均匀的多孔结构,可以作为物理交联剂,提高水凝胶的机械鲁棒性。制备的水凝胶具有较高的抗拉强度(155 kPa)、断裂伸长率(177%)和压应力(0.58 MPa)。同时,ats设计的多孔网络有助于快速离子传输,产生2.45 S m-1的高离子电导率。当组装成应变传感器时,水凝胶可以实现对人体运动的精确检测。这项工作为通过无机填料工程设计传感器提供了一种可持续的策略,以调整水凝胶的机械和导电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly Conductive and Mechanically Robust Cellulose Hydrogels Enabled by Attapulgite-Derived Titanium Silicate

Highly Conductive and Mechanically Robust Cellulose Hydrogels Enabled by Attapulgite-Derived Titanium Silicate

The development of cellulose-based hydrogels with integrated mechanical robustness, ionic conductivity, and environmental tolerance is critical for advancing wearable electronics. Herein, we report a dual-cross-linked cellulose hydrogel reinforced with attapulgite-derived titanium silicate (ATS). An acid-hydrothermal approach was used to transform attapulgite into ATS. ATS has a porous structure with uniform channels, and it can serve as a physical cross-linker to improve the mechanical robustness of the hydrogel. The as-prepared hydrogel demonstrated a high tensile strength (155 kPa), fracture elongation (177%), and compressive stress (0.58 MPa). Simultaneously, the ATS-engineered porous network facilitates rapid ion transport, yielding a high ionic conductivity of 2.45 S m–1. When assembled into a strain sensor, the hydrogel can realize the precise detection of human motions. This work provides a sustainable strategy for designing sensors through inorganic filler engineering to tune the mechanical and conductive properties of hydrogels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信