用于大型磁子网络的色散可调谐低损耗植入自旋波波导

IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jannis Bensmann, Robert Schmidt, Kirill O. Nikolaev, Dimitri Raskhodchikov, Shraddha Choudhary, Richa Bhardwaj, Shabnam Taheriniya, Akhil Varri, Sven Niehues, Ahmad El Kadri, Johannes Kern, Wolfram H. P. Pernice, Sergej O. Demokritov, Vladislav E. Demidov, Steffen Michaelis de Vasconcellos, Rudolf Bratschitsch
{"title":"用于大型磁子网络的色散可调谐低损耗植入自旋波波导","authors":"Jannis Bensmann, Robert Schmidt, Kirill O. Nikolaev, Dimitri Raskhodchikov, Shraddha Choudhary, Richa Bhardwaj, Shabnam Taheriniya, Akhil Varri, Sven Niehues, Ahmad El Kadri, Johannes Kern, Wolfram H. P. Pernice, Sergej O. Demokritov, Vladislav E. Demidov, Steffen Michaelis de Vasconcellos, Rudolf Bratschitsch","doi":"10.1038/s41563-025-02282-y","DOIUrl":null,"url":null,"abstract":"<p>Magnonic networks based on magnetic insulators are poised to revolutionize information processing due to their energy efficiency. However, current experimental realizations of spin-wave waveguides, which constitute the building blocks of such a network, suffer from limited spin-wave propagation lengths and inefficient dispersion tuning capabilities. Here we realize low-loss spin-wave waveguides in yttrium iron garnet thin films using silicon ion implantation, which creates an amorphous waveguide cladding. We measure spin-wave decay lengths exceeding 100 µm in submicrometre waveguides. The dispersion of the waveguides can be continuously tuned due to the precise and localized ion implantation, which sets them apart from commonly etched waveguides. Using our maskless waveguide definition, we demonstrate a large-scale magnonic network consisting of 198 crossings, paving the way for wafer-scale magnonic integrated circuits.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"89 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersion-tunable low-loss implanted spin-wave waveguides for large magnonic networks\",\"authors\":\"Jannis Bensmann, Robert Schmidt, Kirill O. Nikolaev, Dimitri Raskhodchikov, Shraddha Choudhary, Richa Bhardwaj, Shabnam Taheriniya, Akhil Varri, Sven Niehues, Ahmad El Kadri, Johannes Kern, Wolfram H. P. Pernice, Sergej O. Demokritov, Vladislav E. Demidov, Steffen Michaelis de Vasconcellos, Rudolf Bratschitsch\",\"doi\":\"10.1038/s41563-025-02282-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magnonic networks based on magnetic insulators are poised to revolutionize information processing due to their energy efficiency. However, current experimental realizations of spin-wave waveguides, which constitute the building blocks of such a network, suffer from limited spin-wave propagation lengths and inefficient dispersion tuning capabilities. Here we realize low-loss spin-wave waveguides in yttrium iron garnet thin films using silicon ion implantation, which creates an amorphous waveguide cladding. We measure spin-wave decay lengths exceeding 100 µm in submicrometre waveguides. The dispersion of the waveguides can be continuously tuned due to the precise and localized ion implantation, which sets them apart from commonly etched waveguides. Using our maskless waveguide definition, we demonstrate a large-scale magnonic network consisting of 198 crossings, paving the way for wafer-scale magnonic integrated circuits.</p>\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":38.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02282-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02282-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于磁绝缘体的磁振子网络由于其能量效率而准备彻底改变信息处理。然而,目前的实验实现的自旋波波导,作为这种网络的组成部分,受限于自旋波传播长度和低效率的色散调谐能力。本文采用硅离子注入的方法在钇铁石榴石薄膜中实现了低损耗自旋波波导,形成了非晶波导包层。我们测量了亚微米波导中超过100微米的自旋波衰减长度。由于精确和局部离子注入,波导的色散可以连续调谐,这使它们与普通蚀刻波导区别开来。利用我们的无掩模波导定义,我们展示了一个由198个交叉点组成的大规模磁振子网络,为晶圆级磁振子集成电路铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dispersion-tunable low-loss implanted spin-wave waveguides for large magnonic networks

Dispersion-tunable low-loss implanted spin-wave waveguides for large magnonic networks

Magnonic networks based on magnetic insulators are poised to revolutionize information processing due to their energy efficiency. However, current experimental realizations of spin-wave waveguides, which constitute the building blocks of such a network, suffer from limited spin-wave propagation lengths and inefficient dispersion tuning capabilities. Here we realize low-loss spin-wave waveguides in yttrium iron garnet thin films using silicon ion implantation, which creates an amorphous waveguide cladding. We measure spin-wave decay lengths exceeding 100 µm in submicrometre waveguides. The dispersion of the waveguides can be continuously tuned due to the precise and localized ion implantation, which sets them apart from commonly etched waveguides. Using our maskless waveguide definition, we demonstrate a large-scale magnonic network consisting of 198 crossings, paving the way for wafer-scale magnonic integrated circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信