Jason S. Kahn, Brian Minevich, Aaron Michelson, Hamed Emamy, Jiahao Wu, Huajian Ji, Alexia Yun, Kim Kisslinger, Shuting Xiang, Nanfang Yu, Sanat K. Kumar, Oleg Gang
{"title":"通过可编程键的逆设计编码分层三维结构","authors":"Jason S. Kahn, Brian Minevich, Aaron Michelson, Hamed Emamy, Jiahao Wu, Huajian Ji, Alexia Yun, Kim Kisslinger, Shuting Xiang, Nanfang Yu, Sanat K. Kumar, Oleg Gang","doi":"10.1038/s41563-025-02263-1","DOIUrl":null,"url":null,"abstract":"<p>The ability to fabricate materials and devices at small scales by design has resulted in tremendous technological progress. However, the need for engineered three-dimensional (3D) nanoscale materials requires new strategies for organizing nanocomponents. Here we demonstrate an inverse design approach for the assembly of nanoparticles into hierarchically ordered 3D organizations using DNA voxels with directional, addressable bonds. By identifying intrinsic symmetries in repeating mesoscale structural motifs, we prescribe a set of voxels, termed a mesovoxel, that are assembled into target 3D crystals. The relationship between different degrees of encoded information used for voxel bonds and the fidelity of assembly is investigated using experimental and computational methods. We apply this assembly strategy to create periodic 3D nanoparticle ordered organizations, including structures with low-dimensional elements, helical motifs, a nanoscale analogue of a face-centred perovskite crystal and a distributed Bragg reflector based on a crystal with plasmonic and photonic length-scale regimes.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"21 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Encoding hierarchical 3D architecture through inverse design of programmable bonds\",\"authors\":\"Jason S. Kahn, Brian Minevich, Aaron Michelson, Hamed Emamy, Jiahao Wu, Huajian Ji, Alexia Yun, Kim Kisslinger, Shuting Xiang, Nanfang Yu, Sanat K. Kumar, Oleg Gang\",\"doi\":\"10.1038/s41563-025-02263-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ability to fabricate materials and devices at small scales by design has resulted in tremendous technological progress. However, the need for engineered three-dimensional (3D) nanoscale materials requires new strategies for organizing nanocomponents. Here we demonstrate an inverse design approach for the assembly of nanoparticles into hierarchically ordered 3D organizations using DNA voxels with directional, addressable bonds. By identifying intrinsic symmetries in repeating mesoscale structural motifs, we prescribe a set of voxels, termed a mesovoxel, that are assembled into target 3D crystals. The relationship between different degrees of encoded information used for voxel bonds and the fidelity of assembly is investigated using experimental and computational methods. We apply this assembly strategy to create periodic 3D nanoparticle ordered organizations, including structures with low-dimensional elements, helical motifs, a nanoscale analogue of a face-centred perovskite crystal and a distributed Bragg reflector based on a crystal with plasmonic and photonic length-scale regimes.</p>\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02263-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02263-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Encoding hierarchical 3D architecture through inverse design of programmable bonds
The ability to fabricate materials and devices at small scales by design has resulted in tremendous technological progress. However, the need for engineered three-dimensional (3D) nanoscale materials requires new strategies for organizing nanocomponents. Here we demonstrate an inverse design approach for the assembly of nanoparticles into hierarchically ordered 3D organizations using DNA voxels with directional, addressable bonds. By identifying intrinsic symmetries in repeating mesoscale structural motifs, we prescribe a set of voxels, termed a mesovoxel, that are assembled into target 3D crystals. The relationship between different degrees of encoded information used for voxel bonds and the fidelity of assembly is investigated using experimental and computational methods. We apply this assembly strategy to create periodic 3D nanoparticle ordered organizations, including structures with low-dimensional elements, helical motifs, a nanoscale analogue of a face-centred perovskite crystal and a distributed Bragg reflector based on a crystal with plasmonic and photonic length-scale regimes.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.