质子辐照和退火提高垂直β-Ga2O3肖特基势垒二极管电性能的协同机制

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Weihao Lin, Yun Li, Junzheng Gao, Zhimei Yang, Min Gong, Mingmin Huang, Yuhao Wang, Chenglin Liao, Yao Ma, Gang Xiang
{"title":"质子辐照和退火提高垂直β-Ga2O3肖特基势垒二极管电性能的协同机制","authors":"Weihao Lin, Yun Li, Junzheng Gao, Zhimei Yang, Min Gong, Mingmin Huang, Yuhao Wang, Chenglin Liao, Yao Ma, Gang Xiang","doi":"10.1063/5.0278203","DOIUrl":null,"url":null,"abstract":"This study presents the enhancement of the electrical performance in vertical β-Ga2O3 Schottky barrier diodes (SBDs) through proton irradiation followed by annealing processes, along with the underlying physical mechanisms. Initially, the rectification behavior of these SBDs is significantly degraded following 5 MeV proton irradiation. However, for the device treated post annealing, following irradiation (D1-A500), the carrier concentration (ND) decreases by 72.1%, while the breakdown voltage (BV) increases by 124.5%. Deep level transient spectroscopy analysis reveals an increase in the concentration of acceptor traps, E2* (EC-0.74 eV), and the appearance of a new defect peak, E2 (EC-0.86 eV), attributed to proton irradiation and subsequent annealing. E2 is possibly associated with oxygen antisites (OGaII). Further simulations using technology computer aided design further verify that a reduction in ND improves the BV. Therefore, these findings elucidate the effect of proton irradiation on vertical β-Ga2O3 SBDs and emphasize the recovery of the devices by post-annealing treatment, providing valuable insights for application in radiation environments.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"10 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic mechanism underlying the enhanced electrical performance of vertical β-Ga2O3 Schottky barrier diodes through proton irradiation and annealing\",\"authors\":\"Weihao Lin, Yun Li, Junzheng Gao, Zhimei Yang, Min Gong, Mingmin Huang, Yuhao Wang, Chenglin Liao, Yao Ma, Gang Xiang\",\"doi\":\"10.1063/5.0278203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the enhancement of the electrical performance in vertical β-Ga2O3 Schottky barrier diodes (SBDs) through proton irradiation followed by annealing processes, along with the underlying physical mechanisms. Initially, the rectification behavior of these SBDs is significantly degraded following 5 MeV proton irradiation. However, for the device treated post annealing, following irradiation (D1-A500), the carrier concentration (ND) decreases by 72.1%, while the breakdown voltage (BV) increases by 124.5%. Deep level transient spectroscopy analysis reveals an increase in the concentration of acceptor traps, E2* (EC-0.74 eV), and the appearance of a new defect peak, E2 (EC-0.86 eV), attributed to proton irradiation and subsequent annealing. E2 is possibly associated with oxygen antisites (OGaII). Further simulations using technology computer aided design further verify that a reduction in ND improves the BV. Therefore, these findings elucidate the effect of proton irradiation on vertical β-Ga2O3 SBDs and emphasize the recovery of the devices by post-annealing treatment, providing valuable insights for application in radiation environments.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0278203\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0278203","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了质子辐照后退火处理对垂直β-Ga2O3肖特基势垒二极管(sdd)电性能的增强,以及潜在的物理机制。最初,这些sdd的整流行为在5mev质子辐照后显著降低。然而,对于退火后处理的器件,辐照(D1-A500)后,载流子浓度(ND)下降了72.1%,击穿电压(BV)增加了124.5%。深能级瞬态光谱分析表明,由于质子辐照和随后的退火,受体陷阱E2* (EC-0.74 eV)的浓度增加,并且出现了一个新的缺陷峰E2 (EC-0.86 eV)。E2可能与氧反位体(OGaII)有关。利用计算机辅助设计技术进行的进一步仿真进一步验证了ND的降低提高了BV。因此,这些发现阐明了质子辐照对垂直β-Ga2O3 sdd的影响,并强调了后退火处理对器件的回收,为辐射环境中的应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic mechanism underlying the enhanced electrical performance of vertical β-Ga2O3 Schottky barrier diodes through proton irradiation and annealing
This study presents the enhancement of the electrical performance in vertical β-Ga2O3 Schottky barrier diodes (SBDs) through proton irradiation followed by annealing processes, along with the underlying physical mechanisms. Initially, the rectification behavior of these SBDs is significantly degraded following 5 MeV proton irradiation. However, for the device treated post annealing, following irradiation (D1-A500), the carrier concentration (ND) decreases by 72.1%, while the breakdown voltage (BV) increases by 124.5%. Deep level transient spectroscopy analysis reveals an increase in the concentration of acceptor traps, E2* (EC-0.74 eV), and the appearance of a new defect peak, E2 (EC-0.86 eV), attributed to proton irradiation and subsequent annealing. E2 is possibly associated with oxygen antisites (OGaII). Further simulations using technology computer aided design further verify that a reduction in ND improves the BV. Therefore, these findings elucidate the effect of proton irradiation on vertical β-Ga2O3 SBDs and emphasize the recovery of the devices by post-annealing treatment, providing valuable insights for application in radiation environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信