增温和富营养化协同作用下湖泊N2O排放的微生物驱动因素:群落动态和功能基因响应。

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Chengchao Liao, Lu Li, Min Deng, Kang Song* and Fengchang Wu, 
{"title":"增温和富营养化协同作用下湖泊N2O排放的微生物驱动因素:群落动态和功能基因响应。","authors":"Chengchao Liao,&nbsp;Lu Li,&nbsp;Min Deng,&nbsp;Kang Song* and Fengchang Wu,&nbsp;","doi":"10.1021/acs.est.5c03331","DOIUrl":null,"url":null,"abstract":"<p >Climate warming and eutrophication reshape nitrogen cycling in lakes, yet their combined impacts on lacustrine N<sub>2</sub>O source-sink dynamics and underlying microbial drivers remain poorly resolved. Here, a controlled microcosm experiment was constructed to explore the interaction and microbial mechanism of warming (+4 °C) and nutrient enrichment (low, middle, and high nutrient gradients) to N<sub>2</sub>O emissions. We demonstrate that, compared to warming or eutrophication alone, their synergistic interaction amplified N<sub>2</sub>O flux by 100-fold and 3.5-fold, respectively. Nutrient loading exerts a dominant control over the regulation of N<sub>2</sub>O dynamics, surpassing that of warming. Mechanistically, eutrophication elevates substrate availability, while warming enhances microbial utilization thresholds, synergistically escalating N<sub>2</sub>O emissions. Microbial analyses reveal that nutrient enrichment increases (<i>nirK</i> + <i>nirS</i>)/<i>nosZ</i> and <i>amoA</i> abundance, whereas warming stimulates microbial enzyme activity. These dual stressors collaboratively reshape the microbial community structure, accelerating N<sub>2</sub>O metabolic rates. In addition, thermal stimulation enhances the gas diffusion coefficient and accelerates the release of N<sub>2</sub>O from the aqueous phase. Warming could cause the N<sub>2</sub>O emissions shift from a unimodal nonlinear pattern to linearity with elevated eutrophic level. Our findings establish a mechanistic framework linking climate-nutrient interactions to microbial N-cycling, providing critical insights for predicting and mitigating lacustrine N<sub>2</sub>O emissions in warming ecosystems. Warming shifts lake N<sub>2</sub>O emissions from nonlinear to linear patterns with increased nutrient levels via microbial dynamics, informing nutrient management for climate-resilient waters.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 30","pages":"15816–15827"},"PeriodicalIF":11.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Microbial Drivers of Lacustrine N2O Emissions under Synergistic Warming and Eutrophication: Community Dynamics and Functional Gene Responses\",\"authors\":\"Chengchao Liao,&nbsp;Lu Li,&nbsp;Min Deng,&nbsp;Kang Song* and Fengchang Wu,&nbsp;\",\"doi\":\"10.1021/acs.est.5c03331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Climate warming and eutrophication reshape nitrogen cycling in lakes, yet their combined impacts on lacustrine N<sub>2</sub>O source-sink dynamics and underlying microbial drivers remain poorly resolved. Here, a controlled microcosm experiment was constructed to explore the interaction and microbial mechanism of warming (+4 °C) and nutrient enrichment (low, middle, and high nutrient gradients) to N<sub>2</sub>O emissions. We demonstrate that, compared to warming or eutrophication alone, their synergistic interaction amplified N<sub>2</sub>O flux by 100-fold and 3.5-fold, respectively. Nutrient loading exerts a dominant control over the regulation of N<sub>2</sub>O dynamics, surpassing that of warming. Mechanistically, eutrophication elevates substrate availability, while warming enhances microbial utilization thresholds, synergistically escalating N<sub>2</sub>O emissions. Microbial analyses reveal that nutrient enrichment increases (<i>nirK</i> + <i>nirS</i>)/<i>nosZ</i> and <i>amoA</i> abundance, whereas warming stimulates microbial enzyme activity. These dual stressors collaboratively reshape the microbial community structure, accelerating N<sub>2</sub>O metabolic rates. In addition, thermal stimulation enhances the gas diffusion coefficient and accelerates the release of N<sub>2</sub>O from the aqueous phase. Warming could cause the N<sub>2</sub>O emissions shift from a unimodal nonlinear pattern to linearity with elevated eutrophic level. Our findings establish a mechanistic framework linking climate-nutrient interactions to microbial N-cycling, providing critical insights for predicting and mitigating lacustrine N<sub>2</sub>O emissions in warming ecosystems. Warming shifts lake N<sub>2</sub>O emissions from nonlinear to linear patterns with increased nutrient levels via microbial dynamics, informing nutrient management for climate-resilient waters.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"59 30\",\"pages\":\"15816–15827\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.5c03331\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.5c03331","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

气候变暖和富营养化重塑了湖泊氮循环,但它们对湖泊N2O源库动态和潜在微生物驱动因素的综合影响仍未得到充分解决。本研究通过对照微观实验,探讨增温(+4°C)和养分富集(低、中、高养分梯度)对N2O排放的相互作用及其微生物机制。我们证明,与单独的变暖或富营养化相比,它们的协同相互作用分别使N2O通量增加了100倍和3.5倍。养分负荷对N2O动态的调节起主导作用,超过了增温作用。从机制上讲,富营养化提高了基质利用率,而变暖提高了微生物利用阈值,协同增加了N2O排放。微生物分析表明,营养物富集增加(nirK + nirS)/nosZ和amoA丰度,而升温刺激微生物酶活性。这些双重压力源共同重塑微生物群落结构,加速N2O代谢率。此外,热刺激提高了气体扩散系数,加速了N2O从水相的释放。气候变暖可能导致N2O排放从单峰非线性模式转变为线性模式,且富营养化水平升高。我们的研究结果建立了一个将气候-养分相互作用与微生物n -循环联系起来的机制框架,为预测和减轻变暖生态系统中湖泊N2O排放提供了重要见解。变暖将湖泊N2O排放从非线性模式转变为线性模式,并通过微生物动力学增加营养物水平,为气候适应型水域的营养物管理提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling Microbial Drivers of Lacustrine N2O Emissions under Synergistic Warming and Eutrophication: Community Dynamics and Functional Gene Responses

Unraveling Microbial Drivers of Lacustrine N2O Emissions under Synergistic Warming and Eutrophication: Community Dynamics and Functional Gene Responses

Climate warming and eutrophication reshape nitrogen cycling in lakes, yet their combined impacts on lacustrine N2O source-sink dynamics and underlying microbial drivers remain poorly resolved. Here, a controlled microcosm experiment was constructed to explore the interaction and microbial mechanism of warming (+4 °C) and nutrient enrichment (low, middle, and high nutrient gradients) to N2O emissions. We demonstrate that, compared to warming or eutrophication alone, their synergistic interaction amplified N2O flux by 100-fold and 3.5-fold, respectively. Nutrient loading exerts a dominant control over the regulation of N2O dynamics, surpassing that of warming. Mechanistically, eutrophication elevates substrate availability, while warming enhances microbial utilization thresholds, synergistically escalating N2O emissions. Microbial analyses reveal that nutrient enrichment increases (nirK + nirS)/nosZ and amoA abundance, whereas warming stimulates microbial enzyme activity. These dual stressors collaboratively reshape the microbial community structure, accelerating N2O metabolic rates. In addition, thermal stimulation enhances the gas diffusion coefficient and accelerates the release of N2O from the aqueous phase. Warming could cause the N2O emissions shift from a unimodal nonlinear pattern to linearity with elevated eutrophic level. Our findings establish a mechanistic framework linking climate-nutrient interactions to microbial N-cycling, providing critical insights for predicting and mitigating lacustrine N2O emissions in warming ecosystems. Warming shifts lake N2O emissions from nonlinear to linear patterns with increased nutrient levels via microbial dynamics, informing nutrient management for climate-resilient waters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信