数据驱动的分子编码有效筛选钙钛矿太阳能电池中的有机添加剂

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yang Pu, Zhiyuan Dai, Yifan Zhou, Ning Jia, Hongyue Wang, Yerzhan Mukhametkarimov, Ruihao Chen, Hongqiang Wang, Zhe Liu
{"title":"数据驱动的分子编码有效筛选钙钛矿太阳能电池中的有机添加剂","authors":"Yang Pu, Zhiyuan Dai, Yifan Zhou, Ning Jia, Hongyue Wang, Yerzhan Mukhametkarimov, Ruihao Chen, Hongqiang Wang, Zhe Liu","doi":"10.1002/adfm.202506672","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) has shown promise in screening organic molecular additives for planar perovskite photovoltaics, but is often hindered by predictive biases due to small datasets and reliance on predefined descriptors. Here, Co‐Pilot for Perovskite Additive Screener (Co‐PAS) is introduced, an ML‐driven framework designed to accelerate additive (or passivator) screening for perovskite solar cells (PSCs). Co‐PAS integrates the Molecular Scaffold Classifier (MSC) for scaffold‐based pre‐screening and utilizes Junction Tree Variational Autoencoder (JTVAE) to achieve data‐driven molecular structure representation, significantly enhancing the accuracy of power conversion efficiency (PCE) predictions. By applying Co‐PAS to screen 250 000 molecules randomly drawn from PubChem, candidates are prioritized based on predicted PCE values and key molecular properties, including donor number, dipole moment, and hydrogen bond acceptor count. This workflow helps narrow down to 76 promising candidates, including Boc‐L‐threonine N‐hydroxysuccinimide ester (BTN), a previously unexplored additive in PSCs. The solar cell with BTN achieves a device PCE of 25.20%. These results underscore the potential of Co‐PAS in advancing additive discovery for high‐performance PSCs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"29 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data‐Driven Molecular Encoding for Efficient Screening of Organic Additives in Perovskite Solar Cells\",\"authors\":\"Yang Pu, Zhiyuan Dai, Yifan Zhou, Ning Jia, Hongyue Wang, Yerzhan Mukhametkarimov, Ruihao Chen, Hongqiang Wang, Zhe Liu\",\"doi\":\"10.1002/adfm.202506672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) has shown promise in screening organic molecular additives for planar perovskite photovoltaics, but is often hindered by predictive biases due to small datasets and reliance on predefined descriptors. Here, Co‐Pilot for Perovskite Additive Screener (Co‐PAS) is introduced, an ML‐driven framework designed to accelerate additive (or passivator) screening for perovskite solar cells (PSCs). Co‐PAS integrates the Molecular Scaffold Classifier (MSC) for scaffold‐based pre‐screening and utilizes Junction Tree Variational Autoencoder (JTVAE) to achieve data‐driven molecular structure representation, significantly enhancing the accuracy of power conversion efficiency (PCE) predictions. By applying Co‐PAS to screen 250 000 molecules randomly drawn from PubChem, candidates are prioritized based on predicted PCE values and key molecular properties, including donor number, dipole moment, and hydrogen bond acceptor count. This workflow helps narrow down to 76 promising candidates, including Boc‐L‐threonine N‐hydroxysuccinimide ester (BTN), a previously unexplored additive in PSCs. The solar cell with BTN achieves a device PCE of 25.20%. These results underscore the potential of Co‐PAS in advancing additive discovery for high‐performance PSCs.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202506672\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202506672","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)在筛选平面钙钛矿光伏电池的有机分子添加剂方面显示出前景,但由于数据集小和依赖预定义描述符,机器学习经常受到预测偏差的阻碍。本文介绍了钙钛矿添加剂筛选器(Co - PAS)的Co - Pilot,这是一种ML驱动的框架,旨在加速钙钛矿太阳能电池(PSCs)添加剂(或钝化剂)的筛选。Co - PAS集成了分子支架分类器(MSC)用于基于支架的预筛选,并利用结树变分自编码器(JTVAE)实现数据驱动的分子结构表示,显著提高了功率转换效率(PCE)预测的准确性。通过应用Co - PAS筛选从PubChem中随机抽取的25万个分子,根据预测的PCE值和关键分子性质(包括供体数、偶极矩和氢键受体计数)对候选分子进行优先排序。该工作流程有助于缩小到76个有希望的候选物,包括Boc‐L‐苏氨酸N‐羟基琥珀酰亚胺酯(BTN),这是一种以前未在psc中开发的添加剂。采用BTN的太阳能电池器件PCE达到25.20%。这些结果强调了Co - PAS在推进高性能psc添加剂发现方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data‐Driven Molecular Encoding for Efficient Screening of Organic Additives in Perovskite Solar Cells
Machine learning (ML) has shown promise in screening organic molecular additives for planar perovskite photovoltaics, but is often hindered by predictive biases due to small datasets and reliance on predefined descriptors. Here, Co‐Pilot for Perovskite Additive Screener (Co‐PAS) is introduced, an ML‐driven framework designed to accelerate additive (or passivator) screening for perovskite solar cells (PSCs). Co‐PAS integrates the Molecular Scaffold Classifier (MSC) for scaffold‐based pre‐screening and utilizes Junction Tree Variational Autoencoder (JTVAE) to achieve data‐driven molecular structure representation, significantly enhancing the accuracy of power conversion efficiency (PCE) predictions. By applying Co‐PAS to screen 250 000 molecules randomly drawn from PubChem, candidates are prioritized based on predicted PCE values and key molecular properties, including donor number, dipole moment, and hydrogen bond acceptor count. This workflow helps narrow down to 76 promising candidates, including Boc‐L‐threonine N‐hydroxysuccinimide ester (BTN), a previously unexplored additive in PSCs. The solar cell with BTN achieves a device PCE of 25.20%. These results underscore the potential of Co‐PAS in advancing additive discovery for high‐performance PSCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信