{"title":"动物转录调控的进化基础","authors":"Maxwell C. Coyle, Nicole King","doi":"10.1038/s41576-025-00864-9","DOIUrl":null,"url":null,"abstract":"<p>The development of a single-celled zygote into a complex, multicellular animal is directed by transcription factors and regulatory RNAs that coordinate spatio-temporal gene expression patterns. Given the morphological complexity of animals, some prior work has hypothesized that the origin of animals required the evolution of unique and markedly complex transcriptional regulatory mechanisms. Such postulated animal innovations include the evolution of greater numbers of transcription factors, new transcription factor families, distal enhancers and the emergence of long non-coding RNAs. Here, we revisit these explanations in light of new genomic and functional data from diverse early-branching animals and close relatives of animals, which provide essential phylogenetic context for reconstructing the origin of animals. These experimental models also offer examples of how some animal developmental pathways were built from core mechanisms inherited from their protistan ancestors. These new data provide fresh perspectives on whether animal origins entailed fundamental innovations in transcriptional regulation or whether, alternatively, a gradual accumulation of smaller changes sufficed to generate the complex developmental and cell differentiation mechanisms of early animals.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"3 1","pages":""},"PeriodicalIF":39.1000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The evolutionary foundations of transcriptional regulation in animals\",\"authors\":\"Maxwell C. Coyle, Nicole King\",\"doi\":\"10.1038/s41576-025-00864-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of a single-celled zygote into a complex, multicellular animal is directed by transcription factors and regulatory RNAs that coordinate spatio-temporal gene expression patterns. Given the morphological complexity of animals, some prior work has hypothesized that the origin of animals required the evolution of unique and markedly complex transcriptional regulatory mechanisms. Such postulated animal innovations include the evolution of greater numbers of transcription factors, new transcription factor families, distal enhancers and the emergence of long non-coding RNAs. Here, we revisit these explanations in light of new genomic and functional data from diverse early-branching animals and close relatives of animals, which provide essential phylogenetic context for reconstructing the origin of animals. These experimental models also offer examples of how some animal developmental pathways were built from core mechanisms inherited from their protistan ancestors. These new data provide fresh perspectives on whether animal origins entailed fundamental innovations in transcriptional regulation or whether, alternatively, a gradual accumulation of smaller changes sufficed to generate the complex developmental and cell differentiation mechanisms of early animals.</p>\",\"PeriodicalId\":19067,\"journal\":{\"name\":\"Nature Reviews Genetics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":39.1000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41576-025-00864-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41576-025-00864-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The evolutionary foundations of transcriptional regulation in animals
The development of a single-celled zygote into a complex, multicellular animal is directed by transcription factors and regulatory RNAs that coordinate spatio-temporal gene expression patterns. Given the morphological complexity of animals, some prior work has hypothesized that the origin of animals required the evolution of unique and markedly complex transcriptional regulatory mechanisms. Such postulated animal innovations include the evolution of greater numbers of transcription factors, new transcription factor families, distal enhancers and the emergence of long non-coding RNAs. Here, we revisit these explanations in light of new genomic and functional data from diverse early-branching animals and close relatives of animals, which provide essential phylogenetic context for reconstructing the origin of animals. These experimental models also offer examples of how some animal developmental pathways were built from core mechanisms inherited from their protistan ancestors. These new data provide fresh perspectives on whether animal origins entailed fundamental innovations in transcriptional regulation or whether, alternatively, a gradual accumulation of smaller changes sufficed to generate the complex developmental and cell differentiation mechanisms of early animals.
期刊介绍:
At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish.
Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience.
As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.