{"title":"北太平洋对气候变暖的反应维持了美国西南部的干旱","authors":"","doi":"10.1038/s41561-025-01727-y","DOIUrl":null,"url":null,"abstract":"Proxy–model comparisons from the mid-Holocene and ensemble projections of future warming reveal that Northern-Hemisphere warming repeatedly forces the Pacific Decadal Oscillation into a persistent negative phase. This forced North Pacific response stifles winter storms, pointing to a persistent warming-driven drought risk in the Southwest US.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 7","pages":"576-577"},"PeriodicalIF":16.1000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"North Pacific response to warming sustains drought in the Southwest US\",\"authors\":\"\",\"doi\":\"10.1038/s41561-025-01727-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proxy–model comparisons from the mid-Holocene and ensemble projections of future warming reveal that Northern-Hemisphere warming repeatedly forces the Pacific Decadal Oscillation into a persistent negative phase. This forced North Pacific response stifles winter storms, pointing to a persistent warming-driven drought risk in the Southwest US.\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"18 7\",\"pages\":\"576-577\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41561-025-01727-y\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-025-01727-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
North Pacific response to warming sustains drought in the Southwest US
Proxy–model comparisons from the mid-Holocene and ensemble projections of future warming reveal that Northern-Hemisphere warming repeatedly forces the Pacific Decadal Oscillation into a persistent negative phase. This forced North Pacific response stifles winter storms, pointing to a persistent warming-driven drought risk in the Southwest US.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.