亚总体非不变性的标准误差估计。

IF 1.2 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Paul A Jewsbury
{"title":"亚总体非不变性的标准误差估计。","authors":"Paul A Jewsbury","doi":"10.1177/01466216251351947","DOIUrl":null,"url":null,"abstract":"<p><p>Score linking is widely used to place scores from different assessments, or the same assessment under different conditions, onto a common scale. A central concern is whether the linking function is invariant across subpopulations, as violations may threaten fairness. However, evaluating subpopulation differences in linked scores is challenging because linking error is not independent of sampling and measurement error when the same data are used to estimate the linking function and to compare score distributions. We show that common approaches involving neglecting linking error or treating it as independent substantially overestimate the standard errors of subpopulation differences. We introduce new methods that account for linking error dependencies. Simulation results demonstrate the accuracy of the proposed methods, and a practical example with real data illustrates how improved standard error estimation enhances power for detecting subpopulation non-invariance.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":" ","pages":"01466216251351947"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228644/pdf/","citationCount":"0","resultStr":"{\"title\":\"Standard Error Estimation for Subpopulation Non-invariance.\",\"authors\":\"Paul A Jewsbury\",\"doi\":\"10.1177/01466216251351947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Score linking is widely used to place scores from different assessments, or the same assessment under different conditions, onto a common scale. A central concern is whether the linking function is invariant across subpopulations, as violations may threaten fairness. However, evaluating subpopulation differences in linked scores is challenging because linking error is not independent of sampling and measurement error when the same data are used to estimate the linking function and to compare score distributions. We show that common approaches involving neglecting linking error or treating it as independent substantially overestimate the standard errors of subpopulation differences. We introduce new methods that account for linking error dependencies. Simulation results demonstrate the accuracy of the proposed methods, and a practical example with real data illustrates how improved standard error estimation enhances power for detecting subpopulation non-invariance.</p>\",\"PeriodicalId\":48300,\"journal\":{\"name\":\"Applied Psychological Measurement\",\"volume\":\" \",\"pages\":\"01466216251351947\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228644/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/01466216251351947\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216251351947","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

分数挂钩被广泛用于将不同评估的分数,或在不同条件下的同一评估的分数放在一个共同的尺度上。一个中心问题是,连接函数在各个子种群之间是否不变,因为违反连接函数可能会威胁到公平性。然而,当使用相同的数据来估计连接函数和比较分数分布时,评估关联分数的亚群体差异是具有挑战性的,因为连接误差并不独立于抽样和测量误差。我们表明,包括忽略连接误差或将其视为独立的常见方法实质上高估了亚群体差异的标准误差。我们引入了新的方法来解释错误依赖关系的链接。仿真结果表明了所提方法的准确性,并用一个实际数据实例说明了改进的标准误差估计提高了检测亚种群非不变性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Standard Error Estimation for Subpopulation Non-invariance.

Score linking is widely used to place scores from different assessments, or the same assessment under different conditions, onto a common scale. A central concern is whether the linking function is invariant across subpopulations, as violations may threaten fairness. However, evaluating subpopulation differences in linked scores is challenging because linking error is not independent of sampling and measurement error when the same data are used to estimate the linking function and to compare score distributions. We show that common approaches involving neglecting linking error or treating it as independent substantially overestimate the standard errors of subpopulation differences. We introduce new methods that account for linking error dependencies. Simulation results demonstrate the accuracy of the proposed methods, and a practical example with real data illustrates how improved standard error estimation enhances power for detecting subpopulation non-invariance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信