{"title":"优化风力-光伏-电池微电网的可持续和弹性住宅社区。","authors":"Jyotismita Mishra, Ajay Shankar","doi":"10.1038/s41598-025-06354-6","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating solar and wind energy with battery storage systems into microgrids is gaining prominence in both remote areas and high-rise urban buildings. Optimally designing all distributed energy resources (DERs) within a microgrid enhances self-sufficiency, reliability, and economic feasibility. However, due to the inherent unpredictability of DERs, a robust stochastic-based optimization approach is crucial. This article proposes a Grey Wolf-based multi-objective optimization technique for wind-solar-battery-assisted residential microgrids. The method aims to minimize renewable energy costs by determining the optimal sizing of components based on a given microgrid load profile. To address the global energy trilemma, the microgrid is modeled with economic, reliability, and energy indices, ensuring a balanced three-dimensional objective. The proposed algorithm is evaluated across three different configurations, with a numerical analysis of the capacity degradation factor to assess battery lifetime.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"24339"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234665/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing wind-PV-battery microgrids for sustainable and resilient residential communities.\",\"authors\":\"Jyotismita Mishra, Ajay Shankar\",\"doi\":\"10.1038/s41598-025-06354-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrating solar and wind energy with battery storage systems into microgrids is gaining prominence in both remote areas and high-rise urban buildings. Optimally designing all distributed energy resources (DERs) within a microgrid enhances self-sufficiency, reliability, and economic feasibility. However, due to the inherent unpredictability of DERs, a robust stochastic-based optimization approach is crucial. This article proposes a Grey Wolf-based multi-objective optimization technique for wind-solar-battery-assisted residential microgrids. The method aims to minimize renewable energy costs by determining the optimal sizing of components based on a given microgrid load profile. To address the global energy trilemma, the microgrid is modeled with economic, reliability, and energy indices, ensuring a balanced three-dimensional objective. The proposed algorithm is evaluated across three different configurations, with a numerical analysis of the capacity degradation factor to assess battery lifetime.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"24339\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234665/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-06354-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-06354-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Optimizing wind-PV-battery microgrids for sustainable and resilient residential communities.
Integrating solar and wind energy with battery storage systems into microgrids is gaining prominence in both remote areas and high-rise urban buildings. Optimally designing all distributed energy resources (DERs) within a microgrid enhances self-sufficiency, reliability, and economic feasibility. However, due to the inherent unpredictability of DERs, a robust stochastic-based optimization approach is crucial. This article proposes a Grey Wolf-based multi-objective optimization technique for wind-solar-battery-assisted residential microgrids. The method aims to minimize renewable energy costs by determining the optimal sizing of components based on a given microgrid load profile. To address the global energy trilemma, the microgrid is modeled with economic, reliability, and energy indices, ensuring a balanced three-dimensional objective. The proposed algorithm is evaluated across three different configurations, with a numerical analysis of the capacity degradation factor to assess battery lifetime.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.