Mohd Zubair Akhtar, Maximilian Schmid, Gordon Elger
{"title":"利用三维有限元数据预测焊点可靠性的人工智能驱动点云框架。","authors":"Mohd Zubair Akhtar, Maximilian Schmid, Gordon Elger","doi":"10.1038/s41598-025-06902-0","DOIUrl":null,"url":null,"abstract":"<p><p>Crack propagation in solder joints remains a major challenge impacting the thermo-mechanical reliability of electronic devices, underscoring the importance of optimizing package and solder pad designs. Traditional Finite Element Analysis (FEA) techniques for predicting solder joint lifespan often rely on manual post-processing to identify high-risk regions for plastic strain accumulation. However, this manual process can fail to detect complex and subtle failure mechanisms and purely based on averaging the creep strain and correlating it to lifetime values collected from experiments using Coffin Manson equation. To address these limitations, this study presents an Artificial Intelligence (AI) framework designed for automated 3D FEA post-processing of surface-mounted devices (SMDs) assembled to Printed Circuit Board (PCB). This framework integrates 3D Convolutional Neural Networks (CNNs) and PointNet architectures to automatically extract complex spatial features from 3D FEA data. These learned features are then linked to experimentally measured solder joint lifetimes through fully connected neural network layers, allowing the model to capture complex and nonlinear failure behaviours. The research specifically targets crack development in solder joints of ceramic-based high-power LED packages used in automotive lighting systems. This dataset included variations in two-pad and three-pad configurations, as well as thin and thick film metallized ceramic substrates. Results from the study demonstrate that the PointNet model outperforms the 3D CNN, achieving a high correlation with experimental data (R<sup>2</sup> = 99.91%). This AI-driven, automated feature extraction approach significantly improves the accuracy and provide the more reliable models for solder joint lifetime predictions, offering a substantial improvement over traditional method.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"24340"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234657/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-driven point cloud framework for predicting solder joint reliability using 3D FEA data.\",\"authors\":\"Mohd Zubair Akhtar, Maximilian Schmid, Gordon Elger\",\"doi\":\"10.1038/s41598-025-06902-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crack propagation in solder joints remains a major challenge impacting the thermo-mechanical reliability of electronic devices, underscoring the importance of optimizing package and solder pad designs. Traditional Finite Element Analysis (FEA) techniques for predicting solder joint lifespan often rely on manual post-processing to identify high-risk regions for plastic strain accumulation. However, this manual process can fail to detect complex and subtle failure mechanisms and purely based on averaging the creep strain and correlating it to lifetime values collected from experiments using Coffin Manson equation. To address these limitations, this study presents an Artificial Intelligence (AI) framework designed for automated 3D FEA post-processing of surface-mounted devices (SMDs) assembled to Printed Circuit Board (PCB). This framework integrates 3D Convolutional Neural Networks (CNNs) and PointNet architectures to automatically extract complex spatial features from 3D FEA data. These learned features are then linked to experimentally measured solder joint lifetimes through fully connected neural network layers, allowing the model to capture complex and nonlinear failure behaviours. The research specifically targets crack development in solder joints of ceramic-based high-power LED packages used in automotive lighting systems. This dataset included variations in two-pad and three-pad configurations, as well as thin and thick film metallized ceramic substrates. Results from the study demonstrate that the PointNet model outperforms the 3D CNN, achieving a high correlation with experimental data (R<sup>2</sup> = 99.91%). This AI-driven, automated feature extraction approach significantly improves the accuracy and provide the more reliable models for solder joint lifetime predictions, offering a substantial improvement over traditional method.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"24340\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234657/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-06902-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-06902-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
AI-driven point cloud framework for predicting solder joint reliability using 3D FEA data.
Crack propagation in solder joints remains a major challenge impacting the thermo-mechanical reliability of electronic devices, underscoring the importance of optimizing package and solder pad designs. Traditional Finite Element Analysis (FEA) techniques for predicting solder joint lifespan often rely on manual post-processing to identify high-risk regions for plastic strain accumulation. However, this manual process can fail to detect complex and subtle failure mechanisms and purely based on averaging the creep strain and correlating it to lifetime values collected from experiments using Coffin Manson equation. To address these limitations, this study presents an Artificial Intelligence (AI) framework designed for automated 3D FEA post-processing of surface-mounted devices (SMDs) assembled to Printed Circuit Board (PCB). This framework integrates 3D Convolutional Neural Networks (CNNs) and PointNet architectures to automatically extract complex spatial features from 3D FEA data. These learned features are then linked to experimentally measured solder joint lifetimes through fully connected neural network layers, allowing the model to capture complex and nonlinear failure behaviours. The research specifically targets crack development in solder joints of ceramic-based high-power LED packages used in automotive lighting systems. This dataset included variations in two-pad and three-pad configurations, as well as thin and thick film metallized ceramic substrates. Results from the study demonstrate that the PointNet model outperforms the 3D CNN, achieving a high correlation with experimental data (R2 = 99.91%). This AI-driven, automated feature extraction approach significantly improves the accuracy and provide the more reliable models for solder joint lifetime predictions, offering a substantial improvement over traditional method.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.