{"title":"Daurisoline通过靶向LRP1调节tbk1依赖性I型干扰素途径增强抗肿瘤免疫","authors":"Borui Tang, Yuting Wang, Liping Li, Cuicui Sun, Jingwen Dong, Ruoqi Li, Jianfeng Wang, Yu Long, Mingxiao Yin, Fei Xie, Dian Xiao, Xinbo Zhou, Na Zhang, Xiuli Zhao, Yanchun Feng, Hongbin Deng","doi":"10.34133/research.0764","DOIUrl":null,"url":null,"abstract":"<p><p>A promising therapeutic approach in oncology involves immune checkpoint blockade (ICB), which stimulates anti-tumor immune responses. Nevertheless, the effectiveness of this treatment in clinical settings remains limited, underscoring the need for complementary strategies. Recent studies highlight the potential of type I interferon (IFN-I) inducers to reprogram the tumor microenvironment and enhance ICB outcomes. Herein, through high-content screening of a natural compound library, we identified daurisoline (DS), a bioactive alkaloid extracted from the Chinese herbal medicine Rhizoma Menispermi, as a potent inducer of IFN-I signaling. Our findings indicated that DS up-regulates interferon responses and pro-inflammatory cytokine expression in a TANK-binding kinase 1 (TBK1)-dependent manner. In vivo, DS exhibited marked tumor growth inhibition by activating dendritic cells, macrophages, and CD8<sup>+</sup> T cells, thereby enhancing anti-tumor immunity. Utilizing the LiP-SMap approach, we identified low-density lipoprotein receptor-related protein 1 (LRP1) as the direct target of DS. Mechanistically, the binding of DS to LRP1 substantially disrupted lysosomal function, which subsequently triggered 5'-azacytidine-induced protein 2-mediated TBK1 activation and IFN-I production. Furthermore, DS demonstrated synergistic effects with anti-programmed death 1 therapy and a stimulator of interferon genes agonist by remodeling the immunosuppressive microenvironment. Collectively, our findings establish LRP1 as a novel therapeutic target for cancer immunotherapy and highlight DS-driven immune reprogramming as a translatable strategy to potentiate ICB efficacy.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0764"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231193/pdf/","citationCount":"0","resultStr":"{\"title\":\"Daurisoline Modulates the TBK1-Dependent Type I Interferon Pathway to Boost Anti-tumor Immunity via Targeting of LRP1.\",\"authors\":\"Borui Tang, Yuting Wang, Liping Li, Cuicui Sun, Jingwen Dong, Ruoqi Li, Jianfeng Wang, Yu Long, Mingxiao Yin, Fei Xie, Dian Xiao, Xinbo Zhou, Na Zhang, Xiuli Zhao, Yanchun Feng, Hongbin Deng\",\"doi\":\"10.34133/research.0764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A promising therapeutic approach in oncology involves immune checkpoint blockade (ICB), which stimulates anti-tumor immune responses. Nevertheless, the effectiveness of this treatment in clinical settings remains limited, underscoring the need for complementary strategies. Recent studies highlight the potential of type I interferon (IFN-I) inducers to reprogram the tumor microenvironment and enhance ICB outcomes. Herein, through high-content screening of a natural compound library, we identified daurisoline (DS), a bioactive alkaloid extracted from the Chinese herbal medicine Rhizoma Menispermi, as a potent inducer of IFN-I signaling. Our findings indicated that DS up-regulates interferon responses and pro-inflammatory cytokine expression in a TANK-binding kinase 1 (TBK1)-dependent manner. In vivo, DS exhibited marked tumor growth inhibition by activating dendritic cells, macrophages, and CD8<sup>+</sup> T cells, thereby enhancing anti-tumor immunity. Utilizing the LiP-SMap approach, we identified low-density lipoprotein receptor-related protein 1 (LRP1) as the direct target of DS. Mechanistically, the binding of DS to LRP1 substantially disrupted lysosomal function, which subsequently triggered 5'-azacytidine-induced protein 2-mediated TBK1 activation and IFN-I production. Furthermore, DS demonstrated synergistic effects with anti-programmed death 1 therapy and a stimulator of interferon genes agonist by remodeling the immunosuppressive microenvironment. Collectively, our findings establish LRP1 as a novel therapeutic target for cancer immunotherapy and highlight DS-driven immune reprogramming as a translatable strategy to potentiate ICB efficacy.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"8 \",\"pages\":\"0764\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231193/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0764\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0764","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Daurisoline Modulates the TBK1-Dependent Type I Interferon Pathway to Boost Anti-tumor Immunity via Targeting of LRP1.
A promising therapeutic approach in oncology involves immune checkpoint blockade (ICB), which stimulates anti-tumor immune responses. Nevertheless, the effectiveness of this treatment in clinical settings remains limited, underscoring the need for complementary strategies. Recent studies highlight the potential of type I interferon (IFN-I) inducers to reprogram the tumor microenvironment and enhance ICB outcomes. Herein, through high-content screening of a natural compound library, we identified daurisoline (DS), a bioactive alkaloid extracted from the Chinese herbal medicine Rhizoma Menispermi, as a potent inducer of IFN-I signaling. Our findings indicated that DS up-regulates interferon responses and pro-inflammatory cytokine expression in a TANK-binding kinase 1 (TBK1)-dependent manner. In vivo, DS exhibited marked tumor growth inhibition by activating dendritic cells, macrophages, and CD8+ T cells, thereby enhancing anti-tumor immunity. Utilizing the LiP-SMap approach, we identified low-density lipoprotein receptor-related protein 1 (LRP1) as the direct target of DS. Mechanistically, the binding of DS to LRP1 substantially disrupted lysosomal function, which subsequently triggered 5'-azacytidine-induced protein 2-mediated TBK1 activation and IFN-I production. Furthermore, DS demonstrated synergistic effects with anti-programmed death 1 therapy and a stimulator of interferon genes agonist by remodeling the immunosuppressive microenvironment. Collectively, our findings establish LRP1 as a novel therapeutic target for cancer immunotherapy and highlight DS-driven immune reprogramming as a translatable strategy to potentiate ICB efficacy.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.