ADAR1的表达与宫颈癌的进展有关,并负调控NK细胞的活性。

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Valentina Tassinari, Marta Kaciulis, Stefano Petrai, Helena Stabile, Angelina Pernazza, Martina Leopizzi, Valeria Di Maio, Francesca Belleudi, Danilo Ranieri, Vanessa Mancini, Innocenza Palaia, Federica Tanzi, Ludovica Lospinoso Severini, Silvia Ruggeri, Maria Emanuela Greco, Giovanni Bernardini, Alessandra Zingoni, Marco Cippitelli, Cristina Cerboni, Alessandra Soriani
{"title":"ADAR1的表达与宫颈癌的进展有关,并负调控NK细胞的活性。","authors":"Valentina Tassinari, Marta Kaciulis, Stefano Petrai, Helena Stabile, Angelina Pernazza, Martina Leopizzi, Valeria Di Maio, Francesca Belleudi, Danilo Ranieri, Vanessa Mancini, Innocenza Palaia, Federica Tanzi, Ludovica Lospinoso Severini, Silvia Ruggeri, Maria Emanuela Greco, Giovanni Bernardini, Alessandra Zingoni, Marco Cippitelli, Cristina Cerboni, Alessandra Soriani","doi":"10.1172/jci.insight.190244","DOIUrl":null,"url":null,"abstract":"<p><p>ADAR1 edits double-stranded RNAs (dsRNAs) by deaminating adenosines into inosines, preventing aberrant activation of innate immunity by endogenous dsRNAs, which may resemble viral structures. Several tumors exploit ADAR1 to evade immune surveillance; indeed, its deletion reduces tumor viability and reshapes infiltrating leukocytes. Here we investigated the role of ADAR1 in immune evasion mechanisms during cervical cancer (CC) progression. Patients' biopsy samples showed higher ADAR1 expression already in premalignant lesions (squamous intraepithelial lesions [SIL]) and a substantially reduced percentage of infiltrating CD7+ innate cells in in situ and invasive carcinomas compared with normal mucosa, with CD56+ NK cells showing phenotypic alterations that may have affected their functional responses. In CC-derived cell lines (SiHa, CaSki), ADAR1 silencing reduced cell proliferation, an effect further enhanced by exogenous IFN-β administration. It also induced proinflammatory gene expression, as demonstrated by RNA-Seq analysis, and conditioned supernatants collected from these cells activated several NK cell effector functions. NK cell infiltration and activation were also confirmed in organotypic 3D tissue models of SiHa cells knocked out for ADAR1. In conclusion, ADAR1 expression increased with CC progression and was accompanied by alterations in tumor-infiltrating NK cells, but its silencing in CC-derived cell lines potentiated antitumor NK cell activities. Thus, ADAR1 inhibition may represent a therapeutic perspective for CC and possibly other malignancies.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 13","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ADAR1 expression is associated with cervical cancer progression and negatively regulates NK cell activity.\",\"authors\":\"Valentina Tassinari, Marta Kaciulis, Stefano Petrai, Helena Stabile, Angelina Pernazza, Martina Leopizzi, Valeria Di Maio, Francesca Belleudi, Danilo Ranieri, Vanessa Mancini, Innocenza Palaia, Federica Tanzi, Ludovica Lospinoso Severini, Silvia Ruggeri, Maria Emanuela Greco, Giovanni Bernardini, Alessandra Zingoni, Marco Cippitelli, Cristina Cerboni, Alessandra Soriani\",\"doi\":\"10.1172/jci.insight.190244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ADAR1 edits double-stranded RNAs (dsRNAs) by deaminating adenosines into inosines, preventing aberrant activation of innate immunity by endogenous dsRNAs, which may resemble viral structures. Several tumors exploit ADAR1 to evade immune surveillance; indeed, its deletion reduces tumor viability and reshapes infiltrating leukocytes. Here we investigated the role of ADAR1 in immune evasion mechanisms during cervical cancer (CC) progression. Patients' biopsy samples showed higher ADAR1 expression already in premalignant lesions (squamous intraepithelial lesions [SIL]) and a substantially reduced percentage of infiltrating CD7+ innate cells in in situ and invasive carcinomas compared with normal mucosa, with CD56+ NK cells showing phenotypic alterations that may have affected their functional responses. In CC-derived cell lines (SiHa, CaSki), ADAR1 silencing reduced cell proliferation, an effect further enhanced by exogenous IFN-β administration. It also induced proinflammatory gene expression, as demonstrated by RNA-Seq analysis, and conditioned supernatants collected from these cells activated several NK cell effector functions. NK cell infiltration and activation were also confirmed in organotypic 3D tissue models of SiHa cells knocked out for ADAR1. In conclusion, ADAR1 expression increased with CC progression and was accompanied by alterations in tumor-infiltrating NK cells, but its silencing in CC-derived cell lines potentiated antitumor NK cell activities. Thus, ADAR1 inhibition may represent a therapeutic perspective for CC and possibly other malignancies.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\"10 13\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.190244\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.190244","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

ADAR1通过将腺苷脱胺为肌苷来编辑双链rna (dsRNAs),防止内源性dsRNAs异常激活先天免疫,这可能类似于病毒结构。一些肿瘤利用ADAR1逃避免疫监视;事实上,它的缺失降低了肿瘤的生存能力并重塑了浸润的白细胞。在这里,我们研究了ADAR1在宫颈癌(CC)进展过程中免疫逃避机制中的作用。患者活检样本显示,在癌前病变(鳞状上皮内病变[SIL])中ADAR1的表达已经较高,与正常粘膜相比,原位癌和浸润性癌中浸润性CD7+先天细胞的百分比大幅降低,CD56+ NK细胞表现出可能影响其功能反应的表型改变。在cc来源的细胞系中(SiHa, CaSki), ADAR1沉默降低了细胞增殖,外源性IFN-β进一步增强了这一作用。正如RNA-Seq分析所证明的那样,它还诱导了促炎基因的表达,并且从这些细胞中收集的条件上清液激活了几种NK细胞效应功能。在ADAR1敲除的SiHa细胞的器官型3D组织模型中也证实了NK细胞的浸润和活化。总之,ADAR1的表达随着CC的进展而增加,并伴随着肿瘤浸润NK细胞的改变,但在CC来源的细胞系中,ADAR1的沉默增强了抗肿瘤NK细胞的活性。因此,抑制ADAR1可能代表了CC和其他恶性肿瘤的治疗前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ADAR1 expression is associated with cervical cancer progression and negatively regulates NK cell activity.

ADAR1 edits double-stranded RNAs (dsRNAs) by deaminating adenosines into inosines, preventing aberrant activation of innate immunity by endogenous dsRNAs, which may resemble viral structures. Several tumors exploit ADAR1 to evade immune surveillance; indeed, its deletion reduces tumor viability and reshapes infiltrating leukocytes. Here we investigated the role of ADAR1 in immune evasion mechanisms during cervical cancer (CC) progression. Patients' biopsy samples showed higher ADAR1 expression already in premalignant lesions (squamous intraepithelial lesions [SIL]) and a substantially reduced percentage of infiltrating CD7+ innate cells in in situ and invasive carcinomas compared with normal mucosa, with CD56+ NK cells showing phenotypic alterations that may have affected their functional responses. In CC-derived cell lines (SiHa, CaSki), ADAR1 silencing reduced cell proliferation, an effect further enhanced by exogenous IFN-β administration. It also induced proinflammatory gene expression, as demonstrated by RNA-Seq analysis, and conditioned supernatants collected from these cells activated several NK cell effector functions. NK cell infiltration and activation were also confirmed in organotypic 3D tissue models of SiHa cells knocked out for ADAR1. In conclusion, ADAR1 expression increased with CC progression and was accompanied by alterations in tumor-infiltrating NK cells, but its silencing in CC-derived cell lines potentiated antitumor NK cell activities. Thus, ADAR1 inhibition may represent a therapeutic perspective for CC and possibly other malignancies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信