WMRCA +:基于加权多数规则的聚类方法,用于使用代谢基因集预测癌症亚型。

IF 2.5 3区 生物学
Guojun Liu, Zhaopo Zhu, Yongqiang Xing, Hu Meng, Khyber Shinwari, Ningkun Xiao, Guoqing Liu
{"title":"WMRCA +:基于加权多数规则的聚类方法,用于使用代谢基因集预测癌症亚型。","authors":"Guojun Liu, Zhaopo Zhu, Yongqiang Xing, Hu Meng, Khyber Shinwari, Ningkun Xiao, Guoqing Liu","doi":"10.1186/s41065-025-00487-4","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate classification of cancer subtypes plays a pivotal role in advancing precision medicine. In this study, we introduce WMRCA + , a novel clustering approach based on a weighted majority rule that integrates multi-omics data and incorporates metabolic gene sets to robustly determine the optimal number of clusters for tumor subtype identification. WMRCA + evaluates clustering performance using ten internal metrics and offers comprehensive functionalities for data preprocessing and visualization. When applied to The Cancer Genome Atlas (TCGA) lung cancer dataset using lipid metabolism-related gene sets, WMRCA + outperformed widely used clustering algorithms-including iCluster, SNF, NMF, CC, and CNMF-achieving an AUC of 0.947. WMRCA + provides robust, interpretable, and biologically meaningful clustering results, offering a valuable tool for improving the accuracy of cancer subtype prediction. The WMRCA + R package is freely available at https://github.com/guojunliu7/WMRCA .</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"121"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235908/pdf/","citationCount":"0","resultStr":"{\"title\":\"WMRCA + : a weighted majority rule-based clustering method for cancer subtype prediction using metabolic gene sets.\",\"authors\":\"Guojun Liu, Zhaopo Zhu, Yongqiang Xing, Hu Meng, Khyber Shinwari, Ningkun Xiao, Guoqing Liu\",\"doi\":\"10.1186/s41065-025-00487-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate classification of cancer subtypes plays a pivotal role in advancing precision medicine. In this study, we introduce WMRCA + , a novel clustering approach based on a weighted majority rule that integrates multi-omics data and incorporates metabolic gene sets to robustly determine the optimal number of clusters for tumor subtype identification. WMRCA + evaluates clustering performance using ten internal metrics and offers comprehensive functionalities for data preprocessing and visualization. When applied to The Cancer Genome Atlas (TCGA) lung cancer dataset using lipid metabolism-related gene sets, WMRCA + outperformed widely used clustering algorithms-including iCluster, SNF, NMF, CC, and CNMF-achieving an AUC of 0.947. WMRCA + provides robust, interpretable, and biologically meaningful clustering results, offering a valuable tool for improving the accuracy of cancer subtype prediction. The WMRCA + R package is freely available at https://github.com/guojunliu7/WMRCA .</p>\",\"PeriodicalId\":12862,\"journal\":{\"name\":\"Hereditas\",\"volume\":\"162 1\",\"pages\":\"121\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235908/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hereditas\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s41065-025-00487-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00487-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癌症亚型的准确分类对推进精准医疗具有举足轻重的作用。在这项研究中,我们引入了WMRCA +,一种基于加权多数规则的新型聚类方法,该方法集成了多组学数据和代谢基因集,以稳健地确定肿瘤亚型识别的最佳聚类数量。WMRCA +使用十个内部指标评估集群性能,并提供全面的数据预处理和可视化功能。当将WMRCA +应用于使用脂质代谢相关基因集的癌症基因组图谱(TCGA)肺癌数据集时,WMRCA +优于广泛使用的聚类算法-包括iCluster, SNF, NMF, CC和cnmf -达到0.947的AUC。WMRCA +提供了稳健的、可解释的、具有生物学意义的聚类结果,为提高癌症亚型预测的准确性提供了一个有价值的工具。WMRCA + R软件包可在https://github.com/guojunliu7/WMRCA免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WMRCA + : a weighted majority rule-based clustering method for cancer subtype prediction using metabolic gene sets.

Accurate classification of cancer subtypes plays a pivotal role in advancing precision medicine. In this study, we introduce WMRCA + , a novel clustering approach based on a weighted majority rule that integrates multi-omics data and incorporates metabolic gene sets to robustly determine the optimal number of clusters for tumor subtype identification. WMRCA + evaluates clustering performance using ten internal metrics and offers comprehensive functionalities for data preprocessing and visualization. When applied to The Cancer Genome Atlas (TCGA) lung cancer dataset using lipid metabolism-related gene sets, WMRCA + outperformed widely used clustering algorithms-including iCluster, SNF, NMF, CC, and CNMF-achieving an AUC of 0.947. WMRCA + provides robust, interpretable, and biologically meaningful clustering results, offering a valuable tool for improving the accuracy of cancer subtype prediction. The WMRCA + R package is freely available at https://github.com/guojunliu7/WMRCA .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hereditas
Hereditas Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍: For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信