纳米结构光纤的光捕获及铜绿假单胞菌的动力学分析。

IF 2.2 4区 生物学 Q3 BIOPHYSICS
Eric Faudry, Jochen Fick
{"title":"纳米结构光纤的光捕获及铜绿假单胞菌的动力学分析。","authors":"Eric Faudry, Jochen Fick","doi":"10.1007/s00249-025-01775-7","DOIUrl":null,"url":null,"abstract":"<p><p>The study of bacteria swimming behavior or their interaction with other bacteria or cells requires an efficient and flexible tool for bacteria manipulation. Optical tweezers have been shown to be perfectly adapted for this task. Here we report optical trapping of pathogen Pseudomonas aeruginosa bacteria using optical fiber tweezers with dedicated nanostructured optical fibers. Well-aligned straight chains of up to ten bacteria were observed with optical fiber tips, whereas contactless trapping was realized at distances of 100 and 45 µm for Fresnel lens fibers and TIROFs, respectively. Very efficient trapping at laser powers as low as 3.7 mW was achieved. The bacteria vitality is an important parameter in trapping experiments. Mean square displacement and speed autocorrelation methods were applied to obtain a vitality measure and to classify the free bacteria trajectories into free floating, running, and run-wrap-run categories. The high frame rates of our observation videos allow us to reveal a relation between bacteria speed and bacteria orientation oscillations.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical trapping with nanostructured optical fibers and motility analysis of Pseudomonas aeruginosa.\",\"authors\":\"Eric Faudry, Jochen Fick\",\"doi\":\"10.1007/s00249-025-01775-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of bacteria swimming behavior or their interaction with other bacteria or cells requires an efficient and flexible tool for bacteria manipulation. Optical tweezers have been shown to be perfectly adapted for this task. Here we report optical trapping of pathogen Pseudomonas aeruginosa bacteria using optical fiber tweezers with dedicated nanostructured optical fibers. Well-aligned straight chains of up to ten bacteria were observed with optical fiber tips, whereas contactless trapping was realized at distances of 100 and 45 µm for Fresnel lens fibers and TIROFs, respectively. Very efficient trapping at laser powers as low as 3.7 mW was achieved. The bacteria vitality is an important parameter in trapping experiments. Mean square displacement and speed autocorrelation methods were applied to obtain a vitality measure and to classify the free bacteria trajectories into free floating, running, and run-wrap-run categories. The high frame rates of our observation videos allow us to reveal a relation between bacteria speed and bacteria orientation oscillations.</p>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1007/s00249-025-01775-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01775-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

研究细菌的游泳行为或它们与其他细菌或细胞的相互作用需要一种有效和灵活的细菌操作工具。光学镊子已被证明非常适合这项任务。本文报道了利用专用纳米结构光纤的光纤镊子实现病原菌铜绿假单胞菌的光捕获。利用光纤尖端可以观察到排列整齐的直链细菌,最多可达10个,而非接触式捕获则分别在菲涅耳透镜光纤和TIROFs距离100和45 μ m处实现。在低至3.7 mW的激光功率下实现了非常有效的捕获。细菌活力是捕集实验的重要参数。采用均方位移和速度自相关方法获得活力测量,并将自由细菌轨迹分为自由漂浮、运行和运行-缠绕-运行三类。我们观察视频的高帧率使我们能够揭示细菌速度和细菌方向振荡之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical trapping with nanostructured optical fibers and motility analysis of Pseudomonas aeruginosa.

The study of bacteria swimming behavior or their interaction with other bacteria or cells requires an efficient and flexible tool for bacteria manipulation. Optical tweezers have been shown to be perfectly adapted for this task. Here we report optical trapping of pathogen Pseudomonas aeruginosa bacteria using optical fiber tweezers with dedicated nanostructured optical fibers. Well-aligned straight chains of up to ten bacteria were observed with optical fiber tips, whereas contactless trapping was realized at distances of 100 and 45 µm for Fresnel lens fibers and TIROFs, respectively. Very efficient trapping at laser powers as low as 3.7 mW was achieved. The bacteria vitality is an important parameter in trapping experiments. Mean square displacement and speed autocorrelation methods were applied to obtain a vitality measure and to classify the free bacteria trajectories into free floating, running, and run-wrap-run categories. The high frame rates of our observation videos allow us to reveal a relation between bacteria speed and bacteria orientation oscillations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信