Kai Liu, Di Fan, Hai-peng Wu, Xiao-yi Hu, Qiu-li He, Xin-miao Wu, Cui-na Shi, Jian-jun Yang, Mu-huo Ji
{"title":"衰老小胶质细胞通过选择性消除海马CA1兴奋性突触介导神经炎症诱导的认知功能障碍。","authors":"Kai Liu, Di Fan, Hai-peng Wu, Xiao-yi Hu, Qiu-li He, Xin-miao Wu, Cui-na Shi, Jian-jun Yang, Mu-huo Ji","doi":"10.1111/acel.70167","DOIUrl":null,"url":null,"abstract":"<p>Microglia-mediated neuroinflammation has been shown to exert an important effect on the progression of a growing number of neurodegenerative disorders. Prolonged exposure to detrimental stimuli leads to a state of progressive activation and aging-related features in microglia (also termed as senescent microglia). However, the mechanisms by which senescent microglia contribute to neuroinflammation-induced cognitive dysfunction remain to be elucidated. Here, we developed a mouse model of neuroinflammation induced by lipopolysaccharides at 0.5 mg/kg for 7 consecutive days. To evaluate cognitive function, C57BL/6J mice were employed and subjected to a series of behavioral assessments, including the open field, Y-maze, and novel object recognition tests. Employing single-cell RNA sequencing technology, we have delved into the differential expressions of RNA within microglia. Furthermore, to investigate anatomic and physiological alterations of pyramidal neurons, we utilized Golgi staining and whole-cell patch-clamp recordings, respectively. Validation of our results in protein expression was performed using western blotting and immunofluorescence. We specifically identified senescent microglia with a high expression of p16<sup>INK4a</sup> and observed that microglia in the hippocampal CA1 region of the model exhibited signatures of elevated phagocytosis and senescence. A senolytic by ABT-737 treatment alleviated the production of senescence-associated secretory phenotypes, the accumulation of senescent microglia, and the microglial hyperphagocytosis of excitatory synapses following LPS exposures. This treatment also restored reduced excitatory synaptic transmission, impaired long-term potentiation, and cognitive function in the model. These results indicate that reducing senescent microglia may potentially serve as a therapeutic approach to prevent neuroinflammation-related cognitive dysfunction.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 9","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.70167","citationCount":"0","resultStr":"{\"title\":\"Senescent Microglia Mediate Neuroinflammation-Induced Cognitive Dysfunction by Selective Elimination of Excitatory Synapses in the Hippocampal CA1\",\"authors\":\"Kai Liu, Di Fan, Hai-peng Wu, Xiao-yi Hu, Qiu-li He, Xin-miao Wu, Cui-na Shi, Jian-jun Yang, Mu-huo Ji\",\"doi\":\"10.1111/acel.70167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microglia-mediated neuroinflammation has been shown to exert an important effect on the progression of a growing number of neurodegenerative disorders. Prolonged exposure to detrimental stimuli leads to a state of progressive activation and aging-related features in microglia (also termed as senescent microglia). However, the mechanisms by which senescent microglia contribute to neuroinflammation-induced cognitive dysfunction remain to be elucidated. Here, we developed a mouse model of neuroinflammation induced by lipopolysaccharides at 0.5 mg/kg for 7 consecutive days. To evaluate cognitive function, C57BL/6J mice were employed and subjected to a series of behavioral assessments, including the open field, Y-maze, and novel object recognition tests. Employing single-cell RNA sequencing technology, we have delved into the differential expressions of RNA within microglia. Furthermore, to investigate anatomic and physiological alterations of pyramidal neurons, we utilized Golgi staining and whole-cell patch-clamp recordings, respectively. Validation of our results in protein expression was performed using western blotting and immunofluorescence. We specifically identified senescent microglia with a high expression of p16<sup>INK4a</sup> and observed that microglia in the hippocampal CA1 region of the model exhibited signatures of elevated phagocytosis and senescence. A senolytic by ABT-737 treatment alleviated the production of senescence-associated secretory phenotypes, the accumulation of senescent microglia, and the microglial hyperphagocytosis of excitatory synapses following LPS exposures. This treatment also restored reduced excitatory synaptic transmission, impaired long-term potentiation, and cognitive function in the model. These results indicate that reducing senescent microglia may potentially serve as a therapeutic approach to prevent neuroinflammation-related cognitive dysfunction.</p>\",\"PeriodicalId\":55543,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"24 9\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.70167\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.70167\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.70167","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Senescent Microglia Mediate Neuroinflammation-Induced Cognitive Dysfunction by Selective Elimination of Excitatory Synapses in the Hippocampal CA1
Microglia-mediated neuroinflammation has been shown to exert an important effect on the progression of a growing number of neurodegenerative disorders. Prolonged exposure to detrimental stimuli leads to a state of progressive activation and aging-related features in microglia (also termed as senescent microglia). However, the mechanisms by which senescent microglia contribute to neuroinflammation-induced cognitive dysfunction remain to be elucidated. Here, we developed a mouse model of neuroinflammation induced by lipopolysaccharides at 0.5 mg/kg for 7 consecutive days. To evaluate cognitive function, C57BL/6J mice were employed and subjected to a series of behavioral assessments, including the open field, Y-maze, and novel object recognition tests. Employing single-cell RNA sequencing technology, we have delved into the differential expressions of RNA within microglia. Furthermore, to investigate anatomic and physiological alterations of pyramidal neurons, we utilized Golgi staining and whole-cell patch-clamp recordings, respectively. Validation of our results in protein expression was performed using western blotting and immunofluorescence. We specifically identified senescent microglia with a high expression of p16INK4a and observed that microglia in the hippocampal CA1 region of the model exhibited signatures of elevated phagocytosis and senescence. A senolytic by ABT-737 treatment alleviated the production of senescence-associated secretory phenotypes, the accumulation of senescent microglia, and the microglial hyperphagocytosis of excitatory synapses following LPS exposures. This treatment also restored reduced excitatory synaptic transmission, impaired long-term potentiation, and cognitive function in the model. These results indicate that reducing senescent microglia may potentially serve as a therapeutic approach to prevent neuroinflammation-related cognitive dysfunction.
期刊介绍:
Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.