{"title":"从羧酸或其衍生物到胺和醚:可持续形成C-N和C-O键的现代脱羧方法。","authors":"Weidan Yan , Tian Tian , Yasushi Nishihara","doi":"10.1039/d5ob00748h","DOIUrl":null,"url":null,"abstract":"<div><div>Amines and ethers represent essential structural motifs in pharmaceuticals, natural products, organic materials, and catalytic systems. The development of novel, environmentally friendly, and cost-effective strategies for constructing C–N and C–O bonds is therefore of significant importance for the synthesis of these compounds. In recent years, carboxylic acids and their derivatives have emerged as attractive, inexpensive, non-toxic, and readily available synthetic building blocks, serving as promising alternatives to aryl halides. Growing evidence has demonstrated that decarboxylative amination and etherification of carboxylic acid derivatives offer a powerful approach for the synthesis of amines and ethers. These transformations proceed <em>via</em> three principal mechanistic pathways, each offering high atom economy. Specifically, carbanions (or organometallic species) generated through heterolytic decarboxylation can react with suitable electrophiles to form C–heteroatom bonds. In contrast, carbon-centred radicals produced through homolytic decarboxylation can couple with heteroatom-based reagents <em>via</em> radical recombination or oxidative trapping. Additionally, carbocations are typically formed <em>via</em> electrochemical oxidation of carboxylic acids: oxidative decarboxylation first yields a carbon radical, which is then further oxidized at the anode to generate a carbocation. This highly electrophilic intermediate can subsequently be intercepted by heteroatom nucleophiles to construct C–N or C–O bonds. This review highlights recent advances in the field, with a focus on transition metal catalysis, photoredox catalysis, and electrochemical methods for decarboxylative amination and etherification.</div></div>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":"23 32","pages":"Pages 7367-7382"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From carboxylic acids or their derivatives to amines and ethers: modern decarboxylative approaches for sustainable C–N and C–O bond formation\",\"authors\":\"Weidan Yan , Tian Tian , Yasushi Nishihara\",\"doi\":\"10.1039/d5ob00748h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amines and ethers represent essential structural motifs in pharmaceuticals, natural products, organic materials, and catalytic systems. The development of novel, environmentally friendly, and cost-effective strategies for constructing C–N and C–O bonds is therefore of significant importance for the synthesis of these compounds. In recent years, carboxylic acids and their derivatives have emerged as attractive, inexpensive, non-toxic, and readily available synthetic building blocks, serving as promising alternatives to aryl halides. Growing evidence has demonstrated that decarboxylative amination and etherification of carboxylic acid derivatives offer a powerful approach for the synthesis of amines and ethers. These transformations proceed <em>via</em> three principal mechanistic pathways, each offering high atom economy. Specifically, carbanions (or organometallic species) generated through heterolytic decarboxylation can react with suitable electrophiles to form C–heteroatom bonds. In contrast, carbon-centred radicals produced through homolytic decarboxylation can couple with heteroatom-based reagents <em>via</em> radical recombination or oxidative trapping. Additionally, carbocations are typically formed <em>via</em> electrochemical oxidation of carboxylic acids: oxidative decarboxylation first yields a carbon radical, which is then further oxidized at the anode to generate a carbocation. This highly electrophilic intermediate can subsequently be intercepted by heteroatom nucleophiles to construct C–N or C–O bonds. This review highlights recent advances in the field, with a focus on transition metal catalysis, photoredox catalysis, and electrochemical methods for decarboxylative amination and etherification.</div></div>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\"23 32\",\"pages\":\"Pages 7367-7382\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1477052025006007\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1477052025006007","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
From carboxylic acids or their derivatives to amines and ethers: modern decarboxylative approaches for sustainable C–N and C–O bond formation
Amines and ethers represent essential structural motifs in pharmaceuticals, natural products, organic materials, and catalytic systems. The development of novel, environmentally friendly, and cost-effective strategies for constructing C–N and C–O bonds is therefore of significant importance for the synthesis of these compounds. In recent years, carboxylic acids and their derivatives have emerged as attractive, inexpensive, non-toxic, and readily available synthetic building blocks, serving as promising alternatives to aryl halides. Growing evidence has demonstrated that decarboxylative amination and etherification of carboxylic acid derivatives offer a powerful approach for the synthesis of amines and ethers. These transformations proceed via three principal mechanistic pathways, each offering high atom economy. Specifically, carbanions (or organometallic species) generated through heterolytic decarboxylation can react with suitable electrophiles to form C–heteroatom bonds. In contrast, carbon-centred radicals produced through homolytic decarboxylation can couple with heteroatom-based reagents via radical recombination or oxidative trapping. Additionally, carbocations are typically formed via electrochemical oxidation of carboxylic acids: oxidative decarboxylation first yields a carbon radical, which is then further oxidized at the anode to generate a carbocation. This highly electrophilic intermediate can subsequently be intercepted by heteroatom nucleophiles to construct C–N or C–O bonds. This review highlights recent advances in the field, with a focus on transition metal catalysis, photoredox catalysis, and electrochemical methods for decarboxylative amination and etherification.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.