工程生物材料中微生物的控制释放。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Manivannan Sivaperuman Kalairaj, Iris George, Sasha M. George, Sofía E. Farfán, Yoo Jin Lee, Laura K. Rivera-Tarazona, Suitu Wang, Mustafa K. Abdelrahman, Seelay Tasmim, Asaf Dana, Philippe E. Zimmern, Sargurunathan Subashchandrabose* and Taylor H. Ware*, 
{"title":"工程生物材料中微生物的控制释放。","authors":"Manivannan Sivaperuman Kalairaj,&nbsp;Iris George,&nbsp;Sasha M. George,&nbsp;Sofía E. Farfán,&nbsp;Yoo Jin Lee,&nbsp;Laura K. Rivera-Tarazona,&nbsp;Suitu Wang,&nbsp;Mustafa K. Abdelrahman,&nbsp;Seelay Tasmim,&nbsp;Asaf Dana,&nbsp;Philippe E. Zimmern,&nbsp;Sargurunathan Subashchandrabose* and Taylor H. Ware*,&nbsp;","doi":"10.1021/acsami.5c11155","DOIUrl":null,"url":null,"abstract":"<p >Probiotics offer therapeutic benefits by modulating the local microbiome, the host immune response, and the proliferation of pathogens. Probiotics have the potential to treat complex diseases, but their persistence or colonization is required at the target site for effective treatment. Although probiotic persistence can be achieved by repeated delivery, no biomaterial that releases clinically relevant doses of metabolically active probiotics in a sustained manner has been previously described. Here, we encapsulate stiff probiotic microorganisms within relatively less stiff hydrogels and show a generic mechanism where these microorganisms proliferate and induce hydrogel fracture, resulting in microbial release. Importantly, this fracture-based mechanism leads to microorganism release with zero-order release kinetics. Using this mechanism, small (∼1 μL) engineered living materials (ELMs) release &gt;10<sup>8</sup> colony-forming-units (CFUs) of <i>Escherichia coli</i> in 2 h. This release is sustained for at least 100 days. Cell release can be varied by more than 3 orders of magnitude by varying initial cell loading and modulating the mechanical properties of the encapsulating matrix. As the governing mechanism of microbial release is entirely mechanical, we demonstrate the controlled release of model Gram-negative, Gram-positive, and fungal probiotics from multiple hydrogel matrices.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 28","pages":"40326–40339"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278213/pdf/","citationCount":"0","resultStr":"{\"title\":\"Controlled Release of Microorganisms from Engineered Living Materials\",\"authors\":\"Manivannan Sivaperuman Kalairaj,&nbsp;Iris George,&nbsp;Sasha M. George,&nbsp;Sofía E. Farfán,&nbsp;Yoo Jin Lee,&nbsp;Laura K. Rivera-Tarazona,&nbsp;Suitu Wang,&nbsp;Mustafa K. Abdelrahman,&nbsp;Seelay Tasmim,&nbsp;Asaf Dana,&nbsp;Philippe E. Zimmern,&nbsp;Sargurunathan Subashchandrabose* and Taylor H. Ware*,&nbsp;\",\"doi\":\"10.1021/acsami.5c11155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Probiotics offer therapeutic benefits by modulating the local microbiome, the host immune response, and the proliferation of pathogens. Probiotics have the potential to treat complex diseases, but their persistence or colonization is required at the target site for effective treatment. Although probiotic persistence can be achieved by repeated delivery, no biomaterial that releases clinically relevant doses of metabolically active probiotics in a sustained manner has been previously described. Here, we encapsulate stiff probiotic microorganisms within relatively less stiff hydrogels and show a generic mechanism where these microorganisms proliferate and induce hydrogel fracture, resulting in microbial release. Importantly, this fracture-based mechanism leads to microorganism release with zero-order release kinetics. Using this mechanism, small (∼1 μL) engineered living materials (ELMs) release &gt;10<sup>8</sup> colony-forming-units (CFUs) of <i>Escherichia coli</i> in 2 h. This release is sustained for at least 100 days. Cell release can be varied by more than 3 orders of magnitude by varying initial cell loading and modulating the mechanical properties of the encapsulating matrix. As the governing mechanism of microbial release is entirely mechanical, we demonstrate the controlled release of model Gram-negative, Gram-positive, and fungal probiotics from multiple hydrogel matrices.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 28\",\"pages\":\"40326–40339\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278213/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c11155\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c11155","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

益生菌通过调节局部微生物群、宿主免疫反应和病原体增殖来提供治疗益处。益生菌具有治疗复杂疾病的潜力,但它们的持久性或定植需要在目标部位进行有效治疗。虽然益生菌的持久性可以通过反复递送来实现,但以前没有描述过以持续的方式释放临床相关剂量的代谢活性益生菌的生物材料。在这里,我们将僵硬的益生菌微生物包裹在相对不那么僵硬的水凝胶中,并展示了这些微生物增殖并诱导水凝胶破裂的一般机制,从而导致微生物释放。重要的是,这种基于断裂的机制导致微生物释放具有零级释放动力学。利用这种机制,小剂量(~ 1 μL)的工程生物材料(ELMs)在2小时内释放出bb10108个大肠杆菌集落形成单位(cfu),这种释放持续至少100天。通过改变初始细胞负荷和调节包封基质的机械性能,细胞释放可以变化3个数量级以上。由于微生物释放的调控机制完全是机械的,我们证明了模型革兰氏阴性菌、革兰氏阳性菌和真菌益生菌从多种水凝胶基质中可控释放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlled Release of Microorganisms from Engineered Living Materials

Probiotics offer therapeutic benefits by modulating the local microbiome, the host immune response, and the proliferation of pathogens. Probiotics have the potential to treat complex diseases, but their persistence or colonization is required at the target site for effective treatment. Although probiotic persistence can be achieved by repeated delivery, no biomaterial that releases clinically relevant doses of metabolically active probiotics in a sustained manner has been previously described. Here, we encapsulate stiff probiotic microorganisms within relatively less stiff hydrogels and show a generic mechanism where these microorganisms proliferate and induce hydrogel fracture, resulting in microbial release. Importantly, this fracture-based mechanism leads to microorganism release with zero-order release kinetics. Using this mechanism, small (∼1 μL) engineered living materials (ELMs) release >108 colony-forming-units (CFUs) of Escherichia coli in 2 h. This release is sustained for at least 100 days. Cell release can be varied by more than 3 orders of magnitude by varying initial cell loading and modulating the mechanical properties of the encapsulating matrix. As the governing mechanism of microbial release is entirely mechanical, we demonstrate the controlled release of model Gram-negative, Gram-positive, and fungal probiotics from multiple hydrogel matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信