在硬币电池结构中利用枣石衍生碳增强用于高压高能超级电容器的温度优化离子液体电解质

Battery Energy Pub Date : 2025-02-26 DOI:10.1002/bte2.70005
Abubakar Dahiru Shuaibu, Abdulmajid A. Mirghni, Syed Shaheen Shah, Yuda Prima Hardianto, Atif Saeed Alzahrani, Md. Abdul Aziz
{"title":"在硬币电池结构中利用枣石衍生碳增强用于高压高能超级电容器的温度优化离子液体电解质","authors":"Abubakar Dahiru Shuaibu,&nbsp;Abdulmajid A. Mirghni,&nbsp;Syed Shaheen Shah,&nbsp;Yuda Prima Hardianto,&nbsp;Atif Saeed Alzahrani,&nbsp;Md. Abdul Aziz","doi":"10.1002/bte2.70005","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the advancement of coin cell supercapacitors (SCs) for sustainable, high-performance energy storage by employing biomass-derived date stone activated carbon with various ionic liquid (IL) electrolytes at different temperatures. The research reveals that SCs demonstrate both pseudocapacitive and electrochemical double-layer characteristics. Among the tested ILs, 1-Butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMOTf) emerges as the most effective, achieving an impressive energy density of 129.9 Wh kg<sup>−1</sup>, a power density of 403.8 W kg<sup>−1</sup>, and a specific capacitance of 103.9 F g<sup>−1</sup> at 0.5 A g<sup>−</sup><sup>1</sup>. After 5000 cycles, the supercapacitor utilizing BMIMOTf maintains 97.3% of its initial capacitance and exhibits a Coulombic efficiency approaching 100%. Additionally, temperature-dependent analyses from room temperature to 50°C reveal that higher temperatures boost the electrochemical performance of the SC, attributed to improved ionic conductivity. This research offers a more comprehensive understanding of how materials and electrolytes interact, emphasizing the capacity of BMIMOTf to foster innovations in eco-friendly energy storage solutions.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70005","citationCount":"0","resultStr":"{\"title\":\"Enhancing Temperature-Optimized Ionic Liquid Electrolytes for High-Voltage, High-Energy Supercapacitors Utilizing Date Stone-Derived Carbon in Coin Cell Configuration\",\"authors\":\"Abubakar Dahiru Shuaibu,&nbsp;Abdulmajid A. Mirghni,&nbsp;Syed Shaheen Shah,&nbsp;Yuda Prima Hardianto,&nbsp;Atif Saeed Alzahrani,&nbsp;Md. Abdul Aziz\",\"doi\":\"10.1002/bte2.70005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the advancement of coin cell supercapacitors (SCs) for sustainable, high-performance energy storage by employing biomass-derived date stone activated carbon with various ionic liquid (IL) electrolytes at different temperatures. The research reveals that SCs demonstrate both pseudocapacitive and electrochemical double-layer characteristics. Among the tested ILs, 1-Butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMOTf) emerges as the most effective, achieving an impressive energy density of 129.9 Wh kg<sup>−1</sup>, a power density of 403.8 W kg<sup>−1</sup>, and a specific capacitance of 103.9 F g<sup>−1</sup> at 0.5 A g<sup>−</sup><sup>1</sup>. After 5000 cycles, the supercapacitor utilizing BMIMOTf maintains 97.3% of its initial capacitance and exhibits a Coulombic efficiency approaching 100%. Additionally, temperature-dependent analyses from room temperature to 50°C reveal that higher temperatures boost the electrochemical performance of the SC, attributed to improved ionic conductivity. This research offers a more comprehensive understanding of how materials and electrolytes interact, emphasizing the capacity of BMIMOTf to foster innovations in eco-friendly energy storage solutions.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.70005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过在不同温度下使用含有不同离子液体(IL)电解质的生物质来源的枣石活性炭,研究了硬币电池超级电容器(SCs)的可持续、高性能储能技术的进展。研究表明,sc具有赝电容和电化学双层特性。在测试的ILs中,1-丁基-3-甲基咪唑三氟甲磺酸盐(BMIMOTf)是最有效的,实现了129.9 Wh kg - 1的能量密度,403.8 W kg - 1的功率密度和103.9 F g - 1的比电容,在0.5 a g - 1。经过5000次循环后,利用BMIMOTf的超级电容器保持了97.3%的初始电容,并显示出接近100%的库仑效率。此外,从室温到50°C的温度相关分析表明,由于离子电导率的提高,更高的温度可以提高SC的电化学性能。这项研究提供了对材料和电解质如何相互作用的更全面的理解,强调了BMIMOTf促进环保储能解决方案创新的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Temperature-Optimized Ionic Liquid Electrolytes for High-Voltage, High-Energy Supercapacitors Utilizing Date Stone-Derived Carbon in Coin Cell Configuration

Enhancing Temperature-Optimized Ionic Liquid Electrolytes for High-Voltage, High-Energy Supercapacitors Utilizing Date Stone-Derived Carbon in Coin Cell Configuration

This study investigates the advancement of coin cell supercapacitors (SCs) for sustainable, high-performance energy storage by employing biomass-derived date stone activated carbon with various ionic liquid (IL) electrolytes at different temperatures. The research reveals that SCs demonstrate both pseudocapacitive and electrochemical double-layer characteristics. Among the tested ILs, 1-Butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMOTf) emerges as the most effective, achieving an impressive energy density of 129.9 Wh kg−1, a power density of 403.8 W kg−1, and a specific capacitance of 103.9 F g−1 at 0.5 A g1. After 5000 cycles, the supercapacitor utilizing BMIMOTf maintains 97.3% of its initial capacitance and exhibits a Coulombic efficiency approaching 100%. Additionally, temperature-dependent analyses from room temperature to 50°C reveal that higher temperatures boost the electrochemical performance of the SC, attributed to improved ionic conductivity. This research offers a more comprehensive understanding of how materials and electrolytes interact, emphasizing the capacity of BMIMOTf to foster innovations in eco-friendly energy storage solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信