{"title":"选择性剪接和基因调控网络的单细胞分析揭示了人类早期胚胎发育过程中显著的表达和调控动态","authors":"Jiwei Chen, Gaigai Wei, Fangge Sun, Yunjin Li, Shuang Tang, Geng Chen","doi":"10.1096/fba.2025-00075","DOIUrl":null,"url":null,"abstract":"<p>Single-cell RNA-seq (scRNA-seq) technologies greatly revolutionized our understanding of cell-to-cell variability of gene expression, but few scRNA-seq technologies were used to describe the expression dynamics at the isoform and exon levels. Although the current expression profile of early embryos was studied focusing on the expression changes at the gene level, systematic investigation of gene expression dynamics of human early embryonic development remains insufficient. Here we systematically explored the gene expression dynamics of human early embryonic development integrating gene expression level with alternative splicing, isoform switching, and expression regulatory network. We found that the genes involved in significant changes in these three aspects are all gradually decreased along embryonic development from E3 to E7 stage. Moreover, these three types of variations are complementary for profiling expression dynamics, and they vary significantly across embryonic development as well as between different sexes. Strikingly, only a small number of genes exhibited prominent expression level changes between male and female embryos in the E3 stage, whereas many more genes showed variations in alternative splicing and major isoform switching. Additionally, we identified functionally important specific gene regulatory modules for each stage and revealed dynamic usage of transcription factor binding motifs (TFBMs). In conclusion, this study provides informative insights into gene dynamic characteristics of human early embryonic development by integrating gene expression level with alternative splicing, isoform switching, and gene regulatory networks. A systematic understanding of gene dynamic alteration features during embryonic development not only expands knowledge on basic developmental biology but also provides fundamental insights for regenerative medicine and developmental diseases.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"7 7","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2025-00075","citationCount":"0","resultStr":"{\"title\":\"Single-Cell Analysis of Alternative Splicing and Gene Regulatory Network Reveals Remarkable Expression and Regulation Dynamics During Human Early Embryonic Development\",\"authors\":\"Jiwei Chen, Gaigai Wei, Fangge Sun, Yunjin Li, Shuang Tang, Geng Chen\",\"doi\":\"10.1096/fba.2025-00075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Single-cell RNA-seq (scRNA-seq) technologies greatly revolutionized our understanding of cell-to-cell variability of gene expression, but few scRNA-seq technologies were used to describe the expression dynamics at the isoform and exon levels. Although the current expression profile of early embryos was studied focusing on the expression changes at the gene level, systematic investigation of gene expression dynamics of human early embryonic development remains insufficient. Here we systematically explored the gene expression dynamics of human early embryonic development integrating gene expression level with alternative splicing, isoform switching, and expression regulatory network. We found that the genes involved in significant changes in these three aspects are all gradually decreased along embryonic development from E3 to E7 stage. Moreover, these three types of variations are complementary for profiling expression dynamics, and they vary significantly across embryonic development as well as between different sexes. Strikingly, only a small number of genes exhibited prominent expression level changes between male and female embryos in the E3 stage, whereas many more genes showed variations in alternative splicing and major isoform switching. Additionally, we identified functionally important specific gene regulatory modules for each stage and revealed dynamic usage of transcription factor binding motifs (TFBMs). In conclusion, this study provides informative insights into gene dynamic characteristics of human early embryonic development by integrating gene expression level with alternative splicing, isoform switching, and gene regulatory networks. A systematic understanding of gene dynamic alteration features during embryonic development not only expands knowledge on basic developmental biology but also provides fundamental insights for regenerative medicine and developmental diseases.</p>\",\"PeriodicalId\":12093,\"journal\":{\"name\":\"FASEB bioAdvances\",\"volume\":\"7 7\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2025-00075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FASEB bioAdvances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://faseb.onlinelibrary.wiley.com/doi/10.1096/fba.2025-00075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://faseb.onlinelibrary.wiley.com/doi/10.1096/fba.2025-00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Single-Cell Analysis of Alternative Splicing and Gene Regulatory Network Reveals Remarkable Expression and Regulation Dynamics During Human Early Embryonic Development
Single-cell RNA-seq (scRNA-seq) technologies greatly revolutionized our understanding of cell-to-cell variability of gene expression, but few scRNA-seq technologies were used to describe the expression dynamics at the isoform and exon levels. Although the current expression profile of early embryos was studied focusing on the expression changes at the gene level, systematic investigation of gene expression dynamics of human early embryonic development remains insufficient. Here we systematically explored the gene expression dynamics of human early embryonic development integrating gene expression level with alternative splicing, isoform switching, and expression regulatory network. We found that the genes involved in significant changes in these three aspects are all gradually decreased along embryonic development from E3 to E7 stage. Moreover, these three types of variations are complementary for profiling expression dynamics, and they vary significantly across embryonic development as well as between different sexes. Strikingly, only a small number of genes exhibited prominent expression level changes between male and female embryos in the E3 stage, whereas many more genes showed variations in alternative splicing and major isoform switching. Additionally, we identified functionally important specific gene regulatory modules for each stage and revealed dynamic usage of transcription factor binding motifs (TFBMs). In conclusion, this study provides informative insights into gene dynamic characteristics of human early embryonic development by integrating gene expression level with alternative splicing, isoform switching, and gene regulatory networks. A systematic understanding of gene dynamic alteration features during embryonic development not only expands knowledge on basic developmental biology but also provides fundamental insights for regenerative medicine and developmental diseases.