无超参数的地球系统模型调谐

IF 4.6 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Nikki Lydeen, Timothy DelSole, Benjamin Cash
{"title":"无超参数的地球系统模型调谐","authors":"Nikki Lydeen,&nbsp;Timothy DelSole,&nbsp;Benjamin Cash","doi":"10.1029/2024MS004607","DOIUrl":null,"url":null,"abstract":"<p>This article introduces a new algorithm, <i>KalmRidge</i>, and demonstrates its ability to tune an Earth system model using idealized experiments. Unlike similar algorithms, KalmRidge eliminates the need for offline hyperparameter selection, thereby substantially reducing computational expense. This is done by rewriting the update equations for the ensemble Kalman filter as an equivalent ridge regression problem, then applying standard cross-validation techniques to adaptively choose the regularization parameter. We propose that this algorithm, with time-mean spherical harmonic projections as tuning targets, provides a promising, tractable approach for parameter estimation.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004607","citationCount":"0","resultStr":"{\"title\":\"Earth System Model Tuning Without Hyperparameters\",\"authors\":\"Nikki Lydeen,&nbsp;Timothy DelSole,&nbsp;Benjamin Cash\",\"doi\":\"10.1029/2024MS004607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article introduces a new algorithm, <i>KalmRidge</i>, and demonstrates its ability to tune an Earth system model using idealized experiments. Unlike similar algorithms, KalmRidge eliminates the need for offline hyperparameter selection, thereby substantially reducing computational expense. This is done by rewriting the update equations for the ensemble Kalman filter as an equivalent ridge regression problem, then applying standard cross-validation techniques to adaptively choose the regularization parameter. We propose that this algorithm, with time-mean spherical harmonic projections as tuning targets, provides a promising, tractable approach for parameter estimation.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 7\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004607\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024MS004607\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024MS004607","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的算法KalmRidge,并演示了它使用理想实验来调整地球系统模型的能力。与类似的算法不同,KalmRidge消除了离线超参数选择的需要,从而大大降低了计算费用。这是通过将集成卡尔曼滤波器的更新方程重写为等效脊回归问题,然后应用标准交叉验证技术自适应地选择正则化参数来完成的。我们提出该算法,以时间平均球谐投影为调谐目标,提供了一个有前途的,易于处理的参数估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Earth System Model Tuning Without Hyperparameters

Earth System Model Tuning Without Hyperparameters

Earth System Model Tuning Without Hyperparameters

Earth System Model Tuning Without Hyperparameters

This article introduces a new algorithm, KalmRidge, and demonstrates its ability to tune an Earth system model using idealized experiments. Unlike similar algorithms, KalmRidge eliminates the need for offline hyperparameter selection, thereby substantially reducing computational expense. This is done by rewriting the update equations for the ensemble Kalman filter as an equivalent ridge regression problem, then applying standard cross-validation techniques to adaptively choose the regularization parameter. We propose that this algorithm, with time-mean spherical harmonic projections as tuning targets, provides a promising, tractable approach for parameter estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信