月球尾流的等离子体再填充:等离子体-真空相互作用,静电冲击和电磁不稳定性

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Xin An, Vassilis Angelopoulos, Terry Z. Liu, Anton Artemyev, Andrew R. Poppe, Donglai Ma
{"title":"月球尾流的等离子体再填充:等离子体-真空相互作用,静电冲击和电磁不稳定性","authors":"Xin An,&nbsp;Vassilis Angelopoulos,&nbsp;Terry Z. Liu,&nbsp;Anton Artemyev,&nbsp;Andrew R. Poppe,&nbsp;Donglai Ma","doi":"10.1029/2025JA034205","DOIUrl":null,"url":null,"abstract":"<p>A plasma void forms downstream of the Moon when the solar wind impacts the lunar surface. This void gradually refills as the solar wind passes by, forming the lunar wake. We investigate this refilling process using a fully kinetic particle-in-cell (PIC) simulation. The early stage of refilling follows plasma-vacuum interaction theory, characterized by exponential decay of plasma density into the wake, along with ion acceleration and cooling in the expansion direction. Our PIC simulation confirms these theoretical predictions. In the next stage of the refilling process, the counter-streaming supersonic ion beams collide, generating Debye-scale electrostatic shocks at the wake's center. These shocks decelerate and thermalize the ion beams while heating electrons into flat-top velocity distributions along magnetic field lines. Additionally, fast magnetosonic waves undergo convective growth via anomalous cyclotron resonance as they co-propagate with temperature-anisotropic ion beams toward the wake's center. Electromagnetic ion cyclotron waves may also be excited through normal cyclotron resonance, counter-propagating with these anisotropic ion beams. Our findings provide new insights into the kinetic aspects of lunar wake refilling and may enhance interpretation of spacecraft observations.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma Refilling of the Lunar Wake: Plasma-Vacuum Interactions, Electrostatic Shocks, and Electromagnetic Instabilities\",\"authors\":\"Xin An,&nbsp;Vassilis Angelopoulos,&nbsp;Terry Z. Liu,&nbsp;Anton Artemyev,&nbsp;Andrew R. Poppe,&nbsp;Donglai Ma\",\"doi\":\"10.1029/2025JA034205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A plasma void forms downstream of the Moon when the solar wind impacts the lunar surface. This void gradually refills as the solar wind passes by, forming the lunar wake. We investigate this refilling process using a fully kinetic particle-in-cell (PIC) simulation. The early stage of refilling follows plasma-vacuum interaction theory, characterized by exponential decay of plasma density into the wake, along with ion acceleration and cooling in the expansion direction. Our PIC simulation confirms these theoretical predictions. In the next stage of the refilling process, the counter-streaming supersonic ion beams collide, generating Debye-scale electrostatic shocks at the wake's center. These shocks decelerate and thermalize the ion beams while heating electrons into flat-top velocity distributions along magnetic field lines. Additionally, fast magnetosonic waves undergo convective growth via anomalous cyclotron resonance as they co-propagate with temperature-anisotropic ion beams toward the wake's center. Electromagnetic ion cyclotron waves may also be excited through normal cyclotron resonance, counter-propagating with these anisotropic ion beams. Our findings provide new insights into the kinetic aspects of lunar wake refilling and may enhance interpretation of spacecraft observations.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 7\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025JA034205\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JA034205","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

当太阳风撞击月球表面时,月球下游形成等离子体空洞。当太阳风经过时,这个空洞逐渐被填满,形成了月球尾流。我们使用完全动力学的颗粒在电池(PIC)模拟来研究这种再填充过程。再填充的早期阶段遵循等离子体-真空相互作用理论,其特征是等离子体密度在尾流中的指数衰减,以及离子在膨胀方向上的加速和冷却。我们的PIC模拟证实了这些理论预测。在再填充过程的下一阶段,反向流动的超音速离子束碰撞,在尾流中心产生德拜级静电冲击。这些冲击使离子束减速并热化,同时将电子加热成沿磁力线的平顶速度分布。此外,当快速磁声波与温度各向异性离子束向尾迹中心共传播时,它们通过异常回旋共振进行对流增长。电磁离子回旋波也可以通过正常的回旋共振激发,与这些各向异性离子束反向传播。我们的发现为月球尾流补给的动力学方面提供了新的见解,并可能增强对航天器观测结果的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasma Refilling of the Lunar Wake: Plasma-Vacuum Interactions, Electrostatic Shocks, and Electromagnetic Instabilities

A plasma void forms downstream of the Moon when the solar wind impacts the lunar surface. This void gradually refills as the solar wind passes by, forming the lunar wake. We investigate this refilling process using a fully kinetic particle-in-cell (PIC) simulation. The early stage of refilling follows plasma-vacuum interaction theory, characterized by exponential decay of plasma density into the wake, along with ion acceleration and cooling in the expansion direction. Our PIC simulation confirms these theoretical predictions. In the next stage of the refilling process, the counter-streaming supersonic ion beams collide, generating Debye-scale electrostatic shocks at the wake's center. These shocks decelerate and thermalize the ion beams while heating electrons into flat-top velocity distributions along magnetic field lines. Additionally, fast magnetosonic waves undergo convective growth via anomalous cyclotron resonance as they co-propagate with temperature-anisotropic ion beams toward the wake's center. Electromagnetic ion cyclotron waves may also be excited through normal cyclotron resonance, counter-propagating with these anisotropic ion beams. Our findings provide new insights into the kinetic aspects of lunar wake refilling and may enhance interpretation of spacecraft observations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信