一种用于滤波器调谐的生成神经网络

IF 3.4 0 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiangqiang Lin;Jinzhu Zhou;Guozhuang Fan;Yongji Ma
{"title":"一种用于滤波器调谐的生成神经网络","authors":"Qiangqiang Lin;Jinzhu Zhou;Guozhuang Fan;Yongji Ma","doi":"10.1109/LMWT.2025.3557834","DOIUrl":null,"url":null,"abstract":"A generative neural network (GTNN) is presented for microwave filter tuning, consisting of two steps. The first step involves offline modeling, where the physics mechanism of the microwave filter is combined with a shared weight neural network. In the second step, online tuning is performed, and tuning values are generated using a gradient descent method. The experimental results of three different filters illustrate that the GTNN achieves better tuning results, and the tuning value is generated in less than 16 s.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 7","pages":"945-948"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generative Neural Network for Filter Tuning\",\"authors\":\"Qiangqiang Lin;Jinzhu Zhou;Guozhuang Fan;Yongji Ma\",\"doi\":\"10.1109/LMWT.2025.3557834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generative neural network (GTNN) is presented for microwave filter tuning, consisting of two steps. The first step involves offline modeling, where the physics mechanism of the microwave filter is combined with a shared weight neural network. In the second step, online tuning is performed, and tuning values are generated using a gradient descent method. The experimental results of three different filters illustrate that the GTNN achieves better tuning results, and the tuning value is generated in less than 16 s.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"35 7\",\"pages\":\"945-948\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10973239/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10973239/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于微波滤波器整定的生成神经网络(GTNN),分为两个步骤。第一步涉及离线建模,其中微波滤波器的物理机制与共享权重神经网络相结合。在第二步中,执行在线调优,并使用梯度下降法生成调优值。三种不同滤波器的实验结果表明,GTNN获得了较好的调谐效果,调谐值在16s以内生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generative Neural Network for Filter Tuning
A generative neural network (GTNN) is presented for microwave filter tuning, consisting of two steps. The first step involves offline modeling, where the physics mechanism of the microwave filter is combined with a shared weight neural network. In the second step, online tuning is performed, and tuning values are generated using a gradient descent method. The experimental results of three different filters illustrate that the GTNN achieves better tuning results, and the tuning value is generated in less than 16 s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信