数据:人工智能的未来:法学硕士的飞速发展:到2030年,法学硕士可以在几个小时内完成长达一个月的任务

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Glenn Zorpette
{"title":"数据:人工智能的未来:法学硕士的飞速发展:到2030年,法学硕士可以在几个小时内完成长达一个月的任务","authors":"Glenn Zorpette","doi":"10.1109/MSPEC.2025.11074452","DOIUrl":null,"url":null,"abstract":"Benchmarking large language models presents some unusual challenges. For one, the main purpose of many LLMs is to provide compelling text that's indistinguishable from human writing. And success in that task may not correlate with metrics traditionally used to judge processor performance, such as instruction execution rate.","PeriodicalId":13249,"journal":{"name":"IEEE Spectrum","volume":"62 7","pages":"14-15"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Data: The Future of AI: LLMs at Warp Speed: By 2030, LLMs May Tackle Monthlong Tasks in Hours\",\"authors\":\"Glenn Zorpette\",\"doi\":\"10.1109/MSPEC.2025.11074452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benchmarking large language models presents some unusual challenges. For one, the main purpose of many LLMs is to provide compelling text that's indistinguishable from human writing. And success in that task may not correlate with metrics traditionally used to judge processor performance, such as instruction execution rate.\",\"PeriodicalId\":13249,\"journal\":{\"name\":\"IEEE Spectrum\",\"volume\":\"62 7\",\"pages\":\"14-15\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Spectrum\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11074452/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Spectrum","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11074452/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对大型语言模型进行基准测试会带来一些不同寻常的挑战。首先,许多法学硕士的主要目的是提供与人类写作没有区别的引人注目的文本。而且,该任务的成功可能与传统上用于判断处理器性能的指标(如指令执行率)无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Data: The Future of AI: LLMs at Warp Speed: By 2030, LLMs May Tackle Monthlong Tasks in Hours
Benchmarking large language models presents some unusual challenges. For one, the main purpose of many LLMs is to provide compelling text that's indistinguishable from human writing. And success in that task may not correlate with metrics traditionally used to judge processor performance, such as instruction execution rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Spectrum
IEEE Spectrum 工程技术-工程:电子与电气
CiteScore
2.50
自引率
0.00%
发文量
254
审稿时长
4-8 weeks
期刊介绍: IEEE Spectrum Magazine, the flagship publication of the IEEE, explores the development, applications and implications of new technologies. It anticipates trends in engineering, science, and technology, and provides a forum for understanding, discussion and leadership in these areas. IEEE Spectrum is the world''s leading engineering and scientific magazine. Read by over 300,000 engineers worldwide, Spectrum provides international coverage of all technical issues and advances in computers, communications, and electronics. Written in clear, concise language for the non-specialist, Spectrum''s high editorial standards and worldwide resources ensure technical accuracy and state-of-the-art relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信