盐度下番茄对二氧化硅纳米颗粒的响应:对光合作用、抗氧化酶活性、胁迫生物标志物和渗透调节物质的影响

IF 7.7
Pravej Alam , Mehmet Yalcin , Mohammad Faizan , Thamer Albalawi
{"title":"盐度下番茄对二氧化硅纳米颗粒的响应:对光合作用、抗氧化酶活性、胁迫生物标志物和渗透调节物质的影响","authors":"Pravej Alam ,&nbsp;Mehmet Yalcin ,&nbsp;Mohammad Faizan ,&nbsp;Thamer Albalawi","doi":"10.1016/j.plana.2025.100171","DOIUrl":null,"url":null,"abstract":"<div><div>Soil salinity imposes pronounced barriers on agricultural productivity by negatively affecting plant growth, morphological traits, and key physiological and biochemical processes. Nanotechnology holds transformative potential for sustainable agriculture by improving enabling precision farming and boosting crop productivity with minimal environmental impact. This study demonstrates the effectiveness of silicon dioxide nanoparticles (SiO<sub>2</sub>-NPs) in alleviating salt stress in tomato (<em>Solanum lycopersicum</em>) plants. We determined the effect of SiO<sub>2</sub>-NPs (50 ppm) on mitigating salt (50 mM) stress in <em>S. lycopersicum</em> by examining various growth attributes and metabolic indicators. The findings demonstrated that SiO<sub>2</sub>-NPs significantly enhanced <em>S. lycopersicum</em> resistance to salt stress. Under salt stress, <em>S. lycopersicum</em> plants showed decreases in net photosynthetic rate (33.41 %), reducing sugar (11.67 %), and protein content (37.21 %), along with increases in total alkaloids (18.67 %), proline content (16.21 %), and the activities of superoxide dismutase (76.42 %) and peroxidase (55.73 %). The foliar application of SiO<sub>2</sub>-NPs significantly enhanced salinity tolerance in <em>S. lycopersicum</em>, as indicated by reductions of 24.15 % in malondialdehyde and 29.31 % in hydrogen peroxide levels, accompanied by increases of 32.47 % in SPAD value, 17.13 % in protein content, 16.54 % in reducing sugar, and 13.44 % in total carbohydrate content. Collectively, these findings highlight the promising role of SiO<sub>2</sub>-NPs in mitigating salt-induced damage in <em>S. lycopersicum</em> by enhancing antioxidant defense, stabilizing cellular structures, and improving key physiological and metabolic functions. This study provides valuable insights into the potential application of SiO<sub>2</sub>-NPs as an effective nanotechnological strategy for enhancing salinity tolerance and sustaining crop productivity under saline conditions.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"13 ","pages":"Article 100171"},"PeriodicalIF":7.7000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of tomato to silicon dioxide nanoparticles under salinity: Impact on photosynthesis, antioxidant enzymes activity, stress biomarkers and osmoregulatory substances\",\"authors\":\"Pravej Alam ,&nbsp;Mehmet Yalcin ,&nbsp;Mohammad Faizan ,&nbsp;Thamer Albalawi\",\"doi\":\"10.1016/j.plana.2025.100171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil salinity imposes pronounced barriers on agricultural productivity by negatively affecting plant growth, morphological traits, and key physiological and biochemical processes. Nanotechnology holds transformative potential for sustainable agriculture by improving enabling precision farming and boosting crop productivity with minimal environmental impact. This study demonstrates the effectiveness of silicon dioxide nanoparticles (SiO<sub>2</sub>-NPs) in alleviating salt stress in tomato (<em>Solanum lycopersicum</em>) plants. We determined the effect of SiO<sub>2</sub>-NPs (50 ppm) on mitigating salt (50 mM) stress in <em>S. lycopersicum</em> by examining various growth attributes and metabolic indicators. The findings demonstrated that SiO<sub>2</sub>-NPs significantly enhanced <em>S. lycopersicum</em> resistance to salt stress. Under salt stress, <em>S. lycopersicum</em> plants showed decreases in net photosynthetic rate (33.41 %), reducing sugar (11.67 %), and protein content (37.21 %), along with increases in total alkaloids (18.67 %), proline content (16.21 %), and the activities of superoxide dismutase (76.42 %) and peroxidase (55.73 %). The foliar application of SiO<sub>2</sub>-NPs significantly enhanced salinity tolerance in <em>S. lycopersicum</em>, as indicated by reductions of 24.15 % in malondialdehyde and 29.31 % in hydrogen peroxide levels, accompanied by increases of 32.47 % in SPAD value, 17.13 % in protein content, 16.54 % in reducing sugar, and 13.44 % in total carbohydrate content. Collectively, these findings highlight the promising role of SiO<sub>2</sub>-NPs in mitigating salt-induced damage in <em>S. lycopersicum</em> by enhancing antioxidant defense, stabilizing cellular structures, and improving key physiological and metabolic functions. This study provides valuable insights into the potential application of SiO<sub>2</sub>-NPs as an effective nanotechnological strategy for enhancing salinity tolerance and sustaining crop productivity under saline conditions.</div></div>\",\"PeriodicalId\":101029,\"journal\":{\"name\":\"Plant Nano Biology\",\"volume\":\"13 \",\"pages\":\"Article 100171\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Nano Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773111125000385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111125000385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

土壤盐分通过对植物生长、形态特征和关键生理生化过程产生负面影响,对农业生产力造成明显的障碍。纳米技术通过改善精准农业和在对环境影响最小的情况下提高作物生产力,对可持续农业具有变革潜力。本研究证明了二氧化硅纳米颗粒(SiO2-NPs)缓解番茄(Solanum lycopersicum)植株盐胁迫的有效性。我们通过检测番茄葡萄的各种生长特性和代谢指标,确定了SiO2-NPs(50 ppm)对缓解盐(50 mM)胁迫的影响。结果表明,SiO2-NPs显著增强了番茄葡萄球菌对盐胁迫的抗性。盐胁迫下,番茄植株净光合速率(33.41 %)、还原糖(11.67 %)和蛋白质含量(37.21 %)降低,总生物碱(18.67 %)、脯氨酸(16.21 %)、超氧化物歧化酶(76.42 %)和过氧化物酶(55.73 %)活性升高。叶面施用SiO2-NPs显著提高了番茄葡萄的耐盐性,丙二醛和过氧化氢含量分别降低了24.15 %和29.31 %,SPAD值、蛋白质含量、还原糖含量和总碳水化合物含量分别提高了32.47 %、17.13 %、16.54 %和13.44 %。总的来说,这些发现突出了SiO2-NPs通过增强抗氧化防御、稳定细胞结构和改善关键的生理和代谢功能,在减轻盐诱导的番茄葡萄球菌损伤方面的重要作用。该研究为SiO2-NPs作为一种有效的纳米技术策略在盐碱条件下提高耐盐性和维持作物生产力的潜在应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Response of tomato to silicon dioxide nanoparticles under salinity: Impact on photosynthesis, antioxidant enzymes activity, stress biomarkers and osmoregulatory substances
Soil salinity imposes pronounced barriers on agricultural productivity by negatively affecting plant growth, morphological traits, and key physiological and biochemical processes. Nanotechnology holds transformative potential for sustainable agriculture by improving enabling precision farming and boosting crop productivity with minimal environmental impact. This study demonstrates the effectiveness of silicon dioxide nanoparticles (SiO2-NPs) in alleviating salt stress in tomato (Solanum lycopersicum) plants. We determined the effect of SiO2-NPs (50 ppm) on mitigating salt (50 mM) stress in S. lycopersicum by examining various growth attributes and metabolic indicators. The findings demonstrated that SiO2-NPs significantly enhanced S. lycopersicum resistance to salt stress. Under salt stress, S. lycopersicum plants showed decreases in net photosynthetic rate (33.41 %), reducing sugar (11.67 %), and protein content (37.21 %), along with increases in total alkaloids (18.67 %), proline content (16.21 %), and the activities of superoxide dismutase (76.42 %) and peroxidase (55.73 %). The foliar application of SiO2-NPs significantly enhanced salinity tolerance in S. lycopersicum, as indicated by reductions of 24.15 % in malondialdehyde and 29.31 % in hydrogen peroxide levels, accompanied by increases of 32.47 % in SPAD value, 17.13 % in protein content, 16.54 % in reducing sugar, and 13.44 % in total carbohydrate content. Collectively, these findings highlight the promising role of SiO2-NPs in mitigating salt-induced damage in S. lycopersicum by enhancing antioxidant defense, stabilizing cellular structures, and improving key physiological and metabolic functions. This study provides valuable insights into the potential application of SiO2-NPs as an effective nanotechnological strategy for enhancing salinity tolerance and sustaining crop productivity under saline conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信