推进绿色能源:利用nbt基钠取代铁氧体纳米复合材料实现可持续发电

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Monika Dhall , Vishal Jakhar , Satish Khasa , Ashima Hooda , Jyoti Shah , R.K. Kotnala
{"title":"推进绿色能源:利用nbt基钠取代铁氧体纳米复合材料实现可持续发电","authors":"Monika Dhall ,&nbsp;Vishal Jakhar ,&nbsp;Satish Khasa ,&nbsp;Ashima Hooda ,&nbsp;Jyoti Shah ,&nbsp;R.K. Kotnala","doi":"10.1016/j.jpcs.2025.112984","DOIUrl":null,"url":null,"abstract":"<div><div>In the quest for sustainable energy, Hydroelectric cells (HECs) have emerged as a groundbreaking alternative to fuel cells and solar cells, offering a cost-effective and eco-friendly route to electricity generation. This study presents a novel approach to engineering high-performance HECs using (1-<em>x</em>) Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub> - <em>x</em> Na<sub>0.2</sub>Mg<sub>0.8</sub>Fe<sub>2</sub>O<sub>4</sub>, (NBT-NMFO) nanocomposites, synthesized via the solid-state reaction method. By strategically tuning oxygen vacancies through compositional variations, a remarkable enhancement in water dissociation efficiency is achieved. Lattice mismatch and ionic radius disparities induced substantial strain and structural defects, creating active sites for water molecule adsorption and dissociation. These modifications were systematically analyzed using X-ray diffraction (XRD), Williamson-Hall (WH) analysis, High-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS), confirming a progressive rise in defect density and oxygen vacancies with increasing NMFO content. Field-emission scanning electron microscopy (FESEM) and Brunauer–Emmett–Teller (BET) confirmed the porous morphology of the synthesized nanocomposites. Dielectric and conductivity analyses in the wet state highlighted their potential for hydroelectric cell (HEC) applications. Electrochemical impedance spectroscopy (EIS) and Nyquist plot modeling revealed a significant reduction in charge transfer resistance, particularly in Na-substituted magnesium ferrite. Notably, Na<sub>0.2</sub>Mg<sub>0.8</sub>Fe<sub>2</sub>O<sub>4</sub>-based HEC (2 × 2 cm<sup>2</sup>) achieved the highest offload current, soaring from 1.05 mA (NBT) to 14.65 mA (NMFO), attributed to minimal charge transfer resistance (0.022 Ω), pronounced lattice strain (2.82 × 10<sup>−3</sup>), enhanced nanoporosity, and abundant defect states. These results establish HECs as a transformative technology for next-generation clean energy and a promising step toward sustainable energy independence.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"208 ","pages":"Article 112984"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing green energy: Sustainable power generation via NBT-based sodium-substituted ferrite nanocomposites\",\"authors\":\"Monika Dhall ,&nbsp;Vishal Jakhar ,&nbsp;Satish Khasa ,&nbsp;Ashima Hooda ,&nbsp;Jyoti Shah ,&nbsp;R.K. Kotnala\",\"doi\":\"10.1016/j.jpcs.2025.112984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the quest for sustainable energy, Hydroelectric cells (HECs) have emerged as a groundbreaking alternative to fuel cells and solar cells, offering a cost-effective and eco-friendly route to electricity generation. This study presents a novel approach to engineering high-performance HECs using (1-<em>x</em>) Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub> - <em>x</em> Na<sub>0.2</sub>Mg<sub>0.8</sub>Fe<sub>2</sub>O<sub>4</sub>, (NBT-NMFO) nanocomposites, synthesized via the solid-state reaction method. By strategically tuning oxygen vacancies through compositional variations, a remarkable enhancement in water dissociation efficiency is achieved. Lattice mismatch and ionic radius disparities induced substantial strain and structural defects, creating active sites for water molecule adsorption and dissociation. These modifications were systematically analyzed using X-ray diffraction (XRD), Williamson-Hall (WH) analysis, High-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS), confirming a progressive rise in defect density and oxygen vacancies with increasing NMFO content. Field-emission scanning electron microscopy (FESEM) and Brunauer–Emmett–Teller (BET) confirmed the porous morphology of the synthesized nanocomposites. Dielectric and conductivity analyses in the wet state highlighted their potential for hydroelectric cell (HEC) applications. Electrochemical impedance spectroscopy (EIS) and Nyquist plot modeling revealed a significant reduction in charge transfer resistance, particularly in Na-substituted magnesium ferrite. Notably, Na<sub>0.2</sub>Mg<sub>0.8</sub>Fe<sub>2</sub>O<sub>4</sub>-based HEC (2 × 2 cm<sup>2</sup>) achieved the highest offload current, soaring from 1.05 mA (NBT) to 14.65 mA (NMFO), attributed to minimal charge transfer resistance (0.022 Ω), pronounced lattice strain (2.82 × 10<sup>−3</sup>), enhanced nanoporosity, and abundant defect states. These results establish HECs as a transformative technology for next-generation clean energy and a promising step toward sustainable energy independence.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"208 \",\"pages\":\"Article 112984\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725004366\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725004366","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在寻求可持续能源的过程中,水电电池(HECs)已经成为燃料电池和太阳能电池的突破性替代品,提供了一种成本效益高且环保的发电方式。本研究提出了一种利用(1-x) Na0.5Bi0.5TiO3 -x Na0.2Mg0.8Fe2O4, (NBT-NMFO)纳米复合材料,通过固相反应法合成高性能HECs的新方法。通过调整氧空位的组成变化,显著提高了水的解离效率。晶格失配和离子半径差异导致了大量的应变和结构缺陷,为水分子的吸附和解离创造了活性位点。利用x射线衍射(XRD)、Williamson-Hall (WH)分析、高分辨率透射电镜(HRTEM)、光致发光(PL)和x射线光电子能谱(XPS)对这些修饰进行了系统分析,证实随着NMFO含量的增加,缺陷密度和氧空位逐渐增加。场发射扫描电镜(FESEM)和布鲁诺尔-埃米特-泰勒(BET)证实了合成的纳米复合材料的多孔形貌。在湿态下的介电和电导率分析突出了它们在水电电池(HEC)应用中的潜力。电化学阻抗谱(EIS)和Nyquist图模型显示电荷转移电阻显著降低,特别是在na取代铁氧体镁中。值得注意的是,基于na0.2 mg0.8 fe2o4的HEC (2 × 2 cm2)获得了最高的卸载电流,从1.05 mA (NBT)飙升至14.65 mA (NMFO),这归功于最小的电荷转移电阻(0.022 Ω)、明显的晶格应变(2.82 × 10−3)、增强的纳米孔隙度和丰富的缺陷态。这些结果表明,HECs是下一代清洁能源的变革性技术,是实现可持续能源独立的有希望的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing green energy: Sustainable power generation via NBT-based sodium-substituted ferrite nanocomposites

Advancing green energy: Sustainable power generation via NBT-based sodium-substituted ferrite nanocomposites
In the quest for sustainable energy, Hydroelectric cells (HECs) have emerged as a groundbreaking alternative to fuel cells and solar cells, offering a cost-effective and eco-friendly route to electricity generation. This study presents a novel approach to engineering high-performance HECs using (1-x) Na0.5Bi0.5TiO3 - x Na0.2Mg0.8Fe2O4, (NBT-NMFO) nanocomposites, synthesized via the solid-state reaction method. By strategically tuning oxygen vacancies through compositional variations, a remarkable enhancement in water dissociation efficiency is achieved. Lattice mismatch and ionic radius disparities induced substantial strain and structural defects, creating active sites for water molecule adsorption and dissociation. These modifications were systematically analyzed using X-ray diffraction (XRD), Williamson-Hall (WH) analysis, High-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS), confirming a progressive rise in defect density and oxygen vacancies with increasing NMFO content. Field-emission scanning electron microscopy (FESEM) and Brunauer–Emmett–Teller (BET) confirmed the porous morphology of the synthesized nanocomposites. Dielectric and conductivity analyses in the wet state highlighted their potential for hydroelectric cell (HEC) applications. Electrochemical impedance spectroscopy (EIS) and Nyquist plot modeling revealed a significant reduction in charge transfer resistance, particularly in Na-substituted magnesium ferrite. Notably, Na0.2Mg0.8Fe2O4-based HEC (2 × 2 cm2) achieved the highest offload current, soaring from 1.05 mA (NBT) to 14.65 mA (NMFO), attributed to minimal charge transfer resistance (0.022 Ω), pronounced lattice strain (2.82 × 10−3), enhanced nanoporosity, and abundant defect states. These results establish HECs as a transformative technology for next-generation clean energy and a promising step toward sustainable energy independence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信