钙钛矿太阳能电池电子传输层中La和Mg掺杂/共掺杂TiO2的第一性原理研究

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yashas Balasooriya , Piyasiri Ekanayake , Narayan Prasad Adhikari , James R. Jennings , Roshan Thotagamuge
{"title":"钙钛矿太阳能电池电子传输层中La和Mg掺杂/共掺杂TiO2的第一性原理研究","authors":"Yashas Balasooriya ,&nbsp;Piyasiri Ekanayake ,&nbsp;Narayan Prasad Adhikari ,&nbsp;James R. Jennings ,&nbsp;Roshan Thotagamuge","doi":"10.1016/j.jpcs.2025.113004","DOIUrl":null,"url":null,"abstract":"<div><div>Doping TiO<sub>2</sub> with La and Mg shows promise in enhancing its performance as an electron transport layer (ETL) in perovskite solar cells. Yet, a comprehensive understanding of the specific contributions of these dopants to TiO<sub>2</sub> properties remains elusive. In the present study, we employ density functional theory calculations with the Hubbard U correction (DFT + U) to explore the structural and electronic characteristics of La-doped TiO<sub>2</sub> and two structural variants co-doped with La and Mg. In one of the two co-doped materials, La and Mg atoms replace O and Ti, respectively (TiO<sub>2</sub>–La<sub>(1)</sub>-Mg<sub>(1)</sub>), while in the other, La and Mg substitute for two Ti atoms (TiO<sub>2</sub>–La<sub>(2)</sub>-Mg<sub>(1)</sub>). The singularly La-doped material, TiO<sub>2</sub>–La<sub>(3)</sub>, is formed by replacing one Ti atom with an La atom. Our comprehensive analysis, formation energy and Koopman's calculations, aimed to determine structural stability. The results indicate that under O-rich or Ti-rich conditions, TiO<sub>2</sub>–La<sub>(2)</sub>-Mg<sub>(1)</sub> shows the most promising characteristics. Assessment of the electronic structure reveals that TiO<sub>2</sub>–La<sub>(2)</sub>-Mg<sub>(1)</sub> and TiO<sub>2</sub>–La<sub>(3)</sub> have a lower density of trap states compared to TiO<sub>2</sub>–La<sub>(1)</sub>-Mg<sub>(1)</sub>. Analysis of the optical spectrum indicates that TiO<sub>2</sub>–La<sub>(2)</sub>-Mg<sub>(1)</sub> exhibits the highest absorption ability in visible range, closely followed by TiO<sub>2</sub>–La<sub>(1)</sub>-Mg<sub>(1)</sub> and TiO<sub>2</sub>–La<sub>(3)</sub>, respectively. In conclusion TiO<sub>2</sub>–La<sub>(2)</sub>-Mg<sub>(1)</sub> and TiO<sub>2</sub>–La<sub>(3)</sub> are identified as the most promising structures, emphasizing the importance of striking a balance between trap states and a narrowed band gap to achieve optimal performance. Furthermore, our findings suggest the potential for efficient TiO<sub>2</sub> co-doped structures under specific growth conditions, highlighting a novel avenue for exploration in both theoretical and experimental domains.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"208 ","pages":"Article 113004"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles study of La and Mg doped/co-doped TiO2 for tailoring trap states in the electron transport layer of perovskite solar cells\",\"authors\":\"Yashas Balasooriya ,&nbsp;Piyasiri Ekanayake ,&nbsp;Narayan Prasad Adhikari ,&nbsp;James R. Jennings ,&nbsp;Roshan Thotagamuge\",\"doi\":\"10.1016/j.jpcs.2025.113004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Doping TiO<sub>2</sub> with La and Mg shows promise in enhancing its performance as an electron transport layer (ETL) in perovskite solar cells. Yet, a comprehensive understanding of the specific contributions of these dopants to TiO<sub>2</sub> properties remains elusive. In the present study, we employ density functional theory calculations with the Hubbard U correction (DFT + U) to explore the structural and electronic characteristics of La-doped TiO<sub>2</sub> and two structural variants co-doped with La and Mg. In one of the two co-doped materials, La and Mg atoms replace O and Ti, respectively (TiO<sub>2</sub>–La<sub>(1)</sub>-Mg<sub>(1)</sub>), while in the other, La and Mg substitute for two Ti atoms (TiO<sub>2</sub>–La<sub>(2)</sub>-Mg<sub>(1)</sub>). The singularly La-doped material, TiO<sub>2</sub>–La<sub>(3)</sub>, is formed by replacing one Ti atom with an La atom. Our comprehensive analysis, formation energy and Koopman's calculations, aimed to determine structural stability. The results indicate that under O-rich or Ti-rich conditions, TiO<sub>2</sub>–La<sub>(2)</sub>-Mg<sub>(1)</sub> shows the most promising characteristics. Assessment of the electronic structure reveals that TiO<sub>2</sub>–La<sub>(2)</sub>-Mg<sub>(1)</sub> and TiO<sub>2</sub>–La<sub>(3)</sub> have a lower density of trap states compared to TiO<sub>2</sub>–La<sub>(1)</sub>-Mg<sub>(1)</sub>. Analysis of the optical spectrum indicates that TiO<sub>2</sub>–La<sub>(2)</sub>-Mg<sub>(1)</sub> exhibits the highest absorption ability in visible range, closely followed by TiO<sub>2</sub>–La<sub>(1)</sub>-Mg<sub>(1)</sub> and TiO<sub>2</sub>–La<sub>(3)</sub>, respectively. In conclusion TiO<sub>2</sub>–La<sub>(2)</sub>-Mg<sub>(1)</sub> and TiO<sub>2</sub>–La<sub>(3)</sub> are identified as the most promising structures, emphasizing the importance of striking a balance between trap states and a narrowed band gap to achieve optimal performance. Furthermore, our findings suggest the potential for efficient TiO<sub>2</sub> co-doped structures under specific growth conditions, highlighting a novel avenue for exploration in both theoretical and experimental domains.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"208 \",\"pages\":\"Article 113004\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725004561\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725004561","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在钙钛矿太阳能电池中掺杂镧和镁有望提高其作为电子传输层(ETL)的性能。然而,全面了解这些掺杂剂对TiO2性能的具体贡献仍然是难以捉摸的。在本研究中,我们采用密度泛函理论计算和Hubbard U校正(DFT + U)来探索La掺杂TiO2和两种共掺杂La和Mg的结构变体的结构和电子特性。在其中一种共掺杂材料中,La和Mg原子分别取代了O和Ti (TiO2-La (1)-Mg(1)),而在另一种共掺杂材料中,La和Mg原子分别取代了两个Ti原子(TiO2-La (2)-Mg(1))。奇异La掺杂材料TiO2-La(3)是由一个La原子取代一个Ti原子形成的。我们的综合分析,地层能量和Koopman的计算,旨在确定结构的稳定性。结果表明,在富o或富ti条件下,TiO2-La (2)-Mg(1)表现出最有前途的特性。电子结构分析表明,TiO2-La (2)-Mg(1)和TiO2-La(3)具有比TiO2-La (1)-Mg(1)更低的阱态密度。光谱分析表明,TiO2-La (2)-Mg(1)在可见光范围内的吸收能力最强,其次是TiO2-La (1)-Mg(1)和TiO2-La(3)。综上所述,TiO2-La (2)-Mg(1)和TiO2-La(3)被认为是最有前途的结构,强调了在阱态和窄带隙之间取得平衡以获得最佳性能的重要性。此外,我们的研究结果表明,在特定的生长条件下,高效的TiO2共掺杂结构具有潜力,在理论和实验领域都有新的探索途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First-principles study of La and Mg doped/co-doped TiO2 for tailoring trap states in the electron transport layer of perovskite solar cells

First-principles study of La and Mg doped/co-doped TiO2 for tailoring trap states in the electron transport layer of perovskite solar cells
Doping TiO2 with La and Mg shows promise in enhancing its performance as an electron transport layer (ETL) in perovskite solar cells. Yet, a comprehensive understanding of the specific contributions of these dopants to TiO2 properties remains elusive. In the present study, we employ density functional theory calculations with the Hubbard U correction (DFT + U) to explore the structural and electronic characteristics of La-doped TiO2 and two structural variants co-doped with La and Mg. In one of the two co-doped materials, La and Mg atoms replace O and Ti, respectively (TiO2–La(1)-Mg(1)), while in the other, La and Mg substitute for two Ti atoms (TiO2–La(2)-Mg(1)). The singularly La-doped material, TiO2–La(3), is formed by replacing one Ti atom with an La atom. Our comprehensive analysis, formation energy and Koopman's calculations, aimed to determine structural stability. The results indicate that under O-rich or Ti-rich conditions, TiO2–La(2)-Mg(1) shows the most promising characteristics. Assessment of the electronic structure reveals that TiO2–La(2)-Mg(1) and TiO2–La(3) have a lower density of trap states compared to TiO2–La(1)-Mg(1). Analysis of the optical spectrum indicates that TiO2–La(2)-Mg(1) exhibits the highest absorption ability in visible range, closely followed by TiO2–La(1)-Mg(1) and TiO2–La(3), respectively. In conclusion TiO2–La(2)-Mg(1) and TiO2–La(3) are identified as the most promising structures, emphasizing the importance of striking a balance between trap states and a narrowed band gap to achieve optimal performance. Furthermore, our findings suggest the potential for efficient TiO2 co-doped structures under specific growth conditions, highlighting a novel avenue for exploration in both theoretical and experimental domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信