粗相是金属中位错产生的来源

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
A.G. Kostryzhev, O.O. Marenych
{"title":"粗相是金属中位错产生的来源","authors":"A.G. Kostryzhev,&nbsp;O.O. Marenych","doi":"10.1016/j.matlet.2025.139050","DOIUrl":null,"url":null,"abstract":"<div><div>Precipitation strengthening mechanism contributed to development of numerous alloys. Its effectiveness is associated with strong dislocation pinning by fine particles of high number density homogeneously dispersed through the alloy matrix. However, the role of coarse precipitates is not only underestimated but frequently considered as detrimental. In this work we discover the dislocation generation mechanism on the interface between the coarse particles and the primary phase. An increased dislocation density originating from the course (&gt;100 nm) particles has a significant impact on the level of precipitation strengthening associated with the fine (&lt;10 nm) particles.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"399 ","pages":"Article 139050"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coarse precipitates are dislocation generation sources in metal\",\"authors\":\"A.G. Kostryzhev,&nbsp;O.O. Marenych\",\"doi\":\"10.1016/j.matlet.2025.139050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Precipitation strengthening mechanism contributed to development of numerous alloys. Its effectiveness is associated with strong dislocation pinning by fine particles of high number density homogeneously dispersed through the alloy matrix. However, the role of coarse precipitates is not only underestimated but frequently considered as detrimental. In this work we discover the dislocation generation mechanism on the interface between the coarse particles and the primary phase. An increased dislocation density originating from the course (&gt;100 nm) particles has a significant impact on the level of precipitation strengthening associated with the fine (&lt;10 nm) particles.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"399 \",\"pages\":\"Article 139050\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X25010791\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25010791","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

沉淀强化机制促进了许多合金的发展。它的有效性与高数量密度的细颗粒均匀分布在合金基体中的强位错钉住有关。然而,粗沉淀物的作用不仅被低估,而且经常被认为是有害的。在本工作中,我们发现了粗颗粒与初级相界面上位错的产生机制。源自粗粒(>100 nm)颗粒的位错密度增加对细粒(<10 nm)颗粒相关的析出强化水平有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coarse precipitates are dislocation generation sources in metal

Coarse precipitates are dislocation generation sources in metal
Precipitation strengthening mechanism contributed to development of numerous alloys. Its effectiveness is associated with strong dislocation pinning by fine particles of high number density homogeneously dispersed through the alloy matrix. However, the role of coarse precipitates is not only underestimated but frequently considered as detrimental. In this work we discover the dislocation generation mechanism on the interface between the coarse particles and the primary phase. An increased dislocation density originating from the course (>100 nm) particles has a significant impact on the level of precipitation strengthening associated with the fine (<10 nm) particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信