在g-C3N4/Ti3C2上设计肖特基势垒并增强电荷转移动力学,以获得优异的光催化制氢和CO2还原效果

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Zeeshan Asghar , Haris Habib , Jawad Ahmad Jrar , Alauddin , Faheem K. Butt , Kewang Zheng , Yongcai Zhang , Jianhua Hou , Xiaozhi Wang
{"title":"在g-C3N4/Ti3C2上设计肖特基势垒并增强电荷转移动力学,以获得优异的光催化制氢和CO2还原效果","authors":"Zeeshan Asghar ,&nbsp;Haris Habib ,&nbsp;Jawad Ahmad Jrar ,&nbsp;Alauddin ,&nbsp;Faheem K. Butt ,&nbsp;Kewang Zheng ,&nbsp;Yongcai Zhang ,&nbsp;Jianhua Hou ,&nbsp;Xiaozhi Wang","doi":"10.1016/j.ijhydene.2025.150182","DOIUrl":null,"url":null,"abstract":"<div><div>2D nanomaterials emerge as promising photocatalysts, offering effective solutions for environmental remediation and addressing the global energy crisis. In this study, we engineered a functional heterojunction that integrates 2D g-C<sub>3</sub>N<sub>4</sub>, Ti<sub>3</sub>C<sub>2</sub> (MXene) nanosheets, and RP nanoparticles, optimized through a simple and economical strategy to boost photocatalytic performance. The g-C<sub>3</sub>N<sub>4</sub>/RP/Ti<sub>3</sub>C<sub>2</sub> photocatalyst showcases an optimal 2.66 eV band gap and well-defined pore width, notably improving visible light absorption. Red phosphorus integration, in controlled amounts, significantly enhances the physicochemical and photocatalytic characteristics of Ti<sub>3</sub>C<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub>. The interaction between the heterostructures and nitrogen vacancies efficiently enhances charge transfer kinetics and control Schottky barrier height. The novel g-C<sub>3</sub>N<sub>4</sub>/RP/Ti<sub>3</sub>C<sub>2</sub> heterostructure enhances the production of superoxide (•O<sub>2</sub><sup>-</sup>) and hydroxyl (•OH) radicals, thereby boosting redox reaction efficiency. This multifunctional photocatalyst reveals significant effectiveness, achieving 99.2 % degradation of RhB within 90 min, 99.7 % degradation of TC in 60 min, a CO evolution rate of 150.9 μmol g<sup>−1</sup> h<sup>−1</sup>, and a H<sub>2</sub> evolution rate of 19400 μmol g<sup>−1</sup> h<sup>−1</sup>. Additionally, computational findings highlight the presence of structural defects, improved charge density, and a suitable band gap, establishing the photocatalyst as a viable solution for economical organic fuel generation and environmental remediation. This research introduces a novel method for the engineering of high-performance nanostructures that enhance photocatalytic activity.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"155 ","pages":"Article 150182"},"PeriodicalIF":8.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Schottky barrier and enhancing charge transfer kinetics via red phosphorus nanoparticles on g-C3N4/Ti3C2 for superior photocatalytic H2 production and CO2 reduction\",\"authors\":\"Zeeshan Asghar ,&nbsp;Haris Habib ,&nbsp;Jawad Ahmad Jrar ,&nbsp;Alauddin ,&nbsp;Faheem K. Butt ,&nbsp;Kewang Zheng ,&nbsp;Yongcai Zhang ,&nbsp;Jianhua Hou ,&nbsp;Xiaozhi Wang\",\"doi\":\"10.1016/j.ijhydene.2025.150182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>2D nanomaterials emerge as promising photocatalysts, offering effective solutions for environmental remediation and addressing the global energy crisis. In this study, we engineered a functional heterojunction that integrates 2D g-C<sub>3</sub>N<sub>4</sub>, Ti<sub>3</sub>C<sub>2</sub> (MXene) nanosheets, and RP nanoparticles, optimized through a simple and economical strategy to boost photocatalytic performance. The g-C<sub>3</sub>N<sub>4</sub>/RP/Ti<sub>3</sub>C<sub>2</sub> photocatalyst showcases an optimal 2.66 eV band gap and well-defined pore width, notably improving visible light absorption. Red phosphorus integration, in controlled amounts, significantly enhances the physicochemical and photocatalytic characteristics of Ti<sub>3</sub>C<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub>. The interaction between the heterostructures and nitrogen vacancies efficiently enhances charge transfer kinetics and control Schottky barrier height. The novel g-C<sub>3</sub>N<sub>4</sub>/RP/Ti<sub>3</sub>C<sub>2</sub> heterostructure enhances the production of superoxide (•O<sub>2</sub><sup>-</sup>) and hydroxyl (•OH) radicals, thereby boosting redox reaction efficiency. This multifunctional photocatalyst reveals significant effectiveness, achieving 99.2 % degradation of RhB within 90 min, 99.7 % degradation of TC in 60 min, a CO evolution rate of 150.9 μmol g<sup>−1</sup> h<sup>−1</sup>, and a H<sub>2</sub> evolution rate of 19400 μmol g<sup>−1</sup> h<sup>−1</sup>. Additionally, computational findings highlight the presence of structural defects, improved charge density, and a suitable band gap, establishing the photocatalyst as a viable solution for economical organic fuel generation and environmental remediation. This research introduces a novel method for the engineering of high-performance nanostructures that enhance photocatalytic activity.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"155 \",\"pages\":\"Article 150182\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925031805\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925031805","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二维纳米材料作为一种极具前景的光催化剂,为环境修复和解决全球能源危机提供了有效的解决方案。在这项研究中,我们设计了一个功能异质结,该异质结集成了2D g-C3N4, Ti3C2 (MXene)纳米片和RP纳米颗粒,通过简单而经济的策略进行了优化,以提高光催化性能。g-C3N4/RP/Ti3C2光催化剂具有最佳的2.66 eV带隙和良好的孔径,显著提高了可见光吸收。在控制用量的情况下,红磷整合能显著提高Ti3C2和g-C3N4的理化和光催化性能。异质结构与氮空位之间的相互作用有效地增强了电荷转移动力学并控制了肖特基势垒高度。新型g-C3N4/RP/Ti3C2异质结构增强了超氧自由基(•O2-)和羟基自由基(•OH)的生成,从而提高了氧化还原反应效率。该多功能光催化剂在90 min内对RhB的降解率为99.2%,对TC的降解率为99.7%,CO的降解率为150.9 μmol g−1 h−1,H2的降解率为19400 μmol g−1 h−1。此外,计算结果强调了结构缺陷的存在,改进的电荷密度和合适的带隙,确立了光催化剂作为经济有机燃料生产和环境修复的可行解决方案。本研究为增强光催化活性的高性能纳米结构的工程设计提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering Schottky barrier and enhancing charge transfer kinetics via red phosphorus nanoparticles on g-C3N4/Ti3C2 for superior photocatalytic H2 production and CO2 reduction
2D nanomaterials emerge as promising photocatalysts, offering effective solutions for environmental remediation and addressing the global energy crisis. In this study, we engineered a functional heterojunction that integrates 2D g-C3N4, Ti3C2 (MXene) nanosheets, and RP nanoparticles, optimized through a simple and economical strategy to boost photocatalytic performance. The g-C3N4/RP/Ti3C2 photocatalyst showcases an optimal 2.66 eV band gap and well-defined pore width, notably improving visible light absorption. Red phosphorus integration, in controlled amounts, significantly enhances the physicochemical and photocatalytic characteristics of Ti3C2 and g-C3N4. The interaction between the heterostructures and nitrogen vacancies efficiently enhances charge transfer kinetics and control Schottky barrier height. The novel g-C3N4/RP/Ti3C2 heterostructure enhances the production of superoxide (•O2-) and hydroxyl (•OH) radicals, thereby boosting redox reaction efficiency. This multifunctional photocatalyst reveals significant effectiveness, achieving 99.2 % degradation of RhB within 90 min, 99.7 % degradation of TC in 60 min, a CO evolution rate of 150.9 μmol g−1 h−1, and a H2 evolution rate of 19400 μmol g−1 h−1. Additionally, computational findings highlight the presence of structural defects, improved charge density, and a suitable band gap, establishing the photocatalyst as a viable solution for economical organic fuel generation and environmental remediation. This research introduces a novel method for the engineering of high-performance nanostructures that enhance photocatalytic activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信