球形结样的辫状等价

IF 0.5 4区 数学 Q3 MATHEMATICS
Anastasios Kokkinakis
{"title":"球形结样的辫状等价","authors":"Anastasios Kokkinakis","doi":"10.1016/j.topol.2025.109491","DOIUrl":null,"url":null,"abstract":"<div><div>Braidoids form a counterpart theory to the theory of planar knotoids, just as braids do for three-dimensional links. As such, planar knotoid diagrams represent the same knotoid in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> if and only if they can be presented as the closure of two labeled braidoid diagrams related by an equivalence relation, named <em>L</em>-equivalence. In this paper, we refine the notion of <em>L</em>-equivalence of braidoid diagrams in order to obtain an equivalence theorem for (multi)-knotoid diagrams in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> when represented as the closure of labeled braidoid diagrams.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109491"},"PeriodicalIF":0.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A braidoid equivalence for spherical knotoids\",\"authors\":\"Anastasios Kokkinakis\",\"doi\":\"10.1016/j.topol.2025.109491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Braidoids form a counterpart theory to the theory of planar knotoids, just as braids do for three-dimensional links. As such, planar knotoid diagrams represent the same knotoid in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> if and only if they can be presented as the closure of two labeled braidoid diagrams related by an equivalence relation, named <em>L</em>-equivalence. In this paper, we refine the notion of <em>L</em>-equivalence of braidoid diagrams in order to obtain an equivalence theorem for (multi)-knotoid diagrams in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> when represented as the closure of labeled braidoid diagrams.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"373 \",\"pages\":\"Article 109491\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125002895\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125002895","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

辫状体形成了平面结状体理论的对应理论,就像辫状体对三维连杆的作用一样。因此,平面类结图在R2中表示相同的类结图当且仅当它们可以表示为两个标记的类结图的闭包,它们之间存在等价关系,称为l -等价。在本文中,我们改进了辫状图的l -等价的概念,以得到S2中(多)-结点图在表示为标记辫状图闭包时的等价定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A braidoid equivalence for spherical knotoids
Braidoids form a counterpart theory to the theory of planar knotoids, just as braids do for three-dimensional links. As such, planar knotoid diagrams represent the same knotoid in R2 if and only if they can be presented as the closure of two labeled braidoid diagrams related by an equivalence relation, named L-equivalence. In this paper, we refine the notion of L-equivalence of braidoid diagrams in order to obtain an equivalence theorem for (multi)-knotoid diagrams in S2 when represented as the closure of labeled braidoid diagrams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信