{"title":"用于糖尿病早期检测的二维材料电化学传感器:进展与展望","authors":"Ming Yang , Dongting Fu , Chunlei Gao , Ying Liu","doi":"10.1016/j.ijoes.2025.101123","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes mellitus represents a significant and escalating global health challenge, characterized by alarming prevalence rates and substantial economic burden. Early detection is paramount for effective management and prevention of debilitating long-term complications, yet conventional diagnostic methods face limitations in terms of accuracy, convenience, cost, and ability to capture dynamic glycemic changes. Electrochemical biosensors offer a promising alternative, providing advantages such as high sensitivity, rapid response, portability, and potential for miniaturization. The advent of two-dimensional (2D) materials, including graphene, transition metal dichalcogenides (TMDs), and MXenes, has revolutionized the field of electrochemical sensing. Their unique physicochemical properties—including high electrical conductivity for rapid electron transfer, large surface area for enhanced analyte interaction, tunable surface functionalization for bioreceptor immobilization, and mechanical flexibility for wearable integration—enable substantial improvements in sensitivity, selectivity, and operational stability of electrochemical sensors. This review provides a comprehensive overview of the progress in utilizing 2D material-enhanced electrochemical sensors for the early detection of key diabetes-related biomarkers, including glucose, glycated hemoglobin (HbA1c), insulin, glucagon, and ketones. We discuss the fundamental properties of these 2D materials and the mechanisms by which they improve sensor sensitivity, selectivity, and stability. Recent advancements in sensor design, fabrication strategies, and performance metrics (limit of detection, linear range, response time) are critically examined, along with validation studies in relevant biological matrices. Despite considerable progress, challenges remain concerning material synthesis reproducibility, long-term stability in biological environments, susceptibility to biofouling and interference, and pathways towards cost-effective, scalable manufacturing and clinical translation. Future prospects, including the exploration of novel 2D materials and heterostructures, advanced functionalization techniques, multiplexed detection platforms, and integration into wearable and point-of-care systems, are discussed. Addressing the current hurdles will be crucial for realizing the full potential of 2D material-based electrochemical sensors in transforming diabetes diagnostics and management.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"20 10","pages":"Article 101123"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D material-based electrochemical sensors for early diabetes detection: A review of progress and prospects\",\"authors\":\"Ming Yang , Dongting Fu , Chunlei Gao , Ying Liu\",\"doi\":\"10.1016/j.ijoes.2025.101123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetes mellitus represents a significant and escalating global health challenge, characterized by alarming prevalence rates and substantial economic burden. Early detection is paramount for effective management and prevention of debilitating long-term complications, yet conventional diagnostic methods face limitations in terms of accuracy, convenience, cost, and ability to capture dynamic glycemic changes. Electrochemical biosensors offer a promising alternative, providing advantages such as high sensitivity, rapid response, portability, and potential for miniaturization. The advent of two-dimensional (2D) materials, including graphene, transition metal dichalcogenides (TMDs), and MXenes, has revolutionized the field of electrochemical sensing. Their unique physicochemical properties—including high electrical conductivity for rapid electron transfer, large surface area for enhanced analyte interaction, tunable surface functionalization for bioreceptor immobilization, and mechanical flexibility for wearable integration—enable substantial improvements in sensitivity, selectivity, and operational stability of electrochemical sensors. This review provides a comprehensive overview of the progress in utilizing 2D material-enhanced electrochemical sensors for the early detection of key diabetes-related biomarkers, including glucose, glycated hemoglobin (HbA1c), insulin, glucagon, and ketones. We discuss the fundamental properties of these 2D materials and the mechanisms by which they improve sensor sensitivity, selectivity, and stability. Recent advancements in sensor design, fabrication strategies, and performance metrics (limit of detection, linear range, response time) are critically examined, along with validation studies in relevant biological matrices. Despite considerable progress, challenges remain concerning material synthesis reproducibility, long-term stability in biological environments, susceptibility to biofouling and interference, and pathways towards cost-effective, scalable manufacturing and clinical translation. Future prospects, including the exploration of novel 2D materials and heterostructures, advanced functionalization techniques, multiplexed detection platforms, and integration into wearable and point-of-care systems, are discussed. Addressing the current hurdles will be crucial for realizing the full potential of 2D material-based electrochemical sensors in transforming diabetes diagnostics and management.</div></div>\",\"PeriodicalId\":13872,\"journal\":{\"name\":\"International Journal of Electrochemical Science\",\"volume\":\"20 10\",\"pages\":\"Article 101123\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrochemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398125001981\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398125001981","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
2D material-based electrochemical sensors for early diabetes detection: A review of progress and prospects
Diabetes mellitus represents a significant and escalating global health challenge, characterized by alarming prevalence rates and substantial economic burden. Early detection is paramount for effective management and prevention of debilitating long-term complications, yet conventional diagnostic methods face limitations in terms of accuracy, convenience, cost, and ability to capture dynamic glycemic changes. Electrochemical biosensors offer a promising alternative, providing advantages such as high sensitivity, rapid response, portability, and potential for miniaturization. The advent of two-dimensional (2D) materials, including graphene, transition metal dichalcogenides (TMDs), and MXenes, has revolutionized the field of electrochemical sensing. Their unique physicochemical properties—including high electrical conductivity for rapid electron transfer, large surface area for enhanced analyte interaction, tunable surface functionalization for bioreceptor immobilization, and mechanical flexibility for wearable integration—enable substantial improvements in sensitivity, selectivity, and operational stability of electrochemical sensors. This review provides a comprehensive overview of the progress in utilizing 2D material-enhanced electrochemical sensors for the early detection of key diabetes-related biomarkers, including glucose, glycated hemoglobin (HbA1c), insulin, glucagon, and ketones. We discuss the fundamental properties of these 2D materials and the mechanisms by which they improve sensor sensitivity, selectivity, and stability. Recent advancements in sensor design, fabrication strategies, and performance metrics (limit of detection, linear range, response time) are critically examined, along with validation studies in relevant biological matrices. Despite considerable progress, challenges remain concerning material synthesis reproducibility, long-term stability in biological environments, susceptibility to biofouling and interference, and pathways towards cost-effective, scalable manufacturing and clinical translation. Future prospects, including the exploration of novel 2D materials and heterostructures, advanced functionalization techniques, multiplexed detection platforms, and integration into wearable and point-of-care systems, are discussed. Addressing the current hurdles will be crucial for realizing the full potential of 2D material-based electrochemical sensors in transforming diabetes diagnostics and management.
期刊介绍:
International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry