基于机器学习的地震结构损伤估计通过一个可访问的web应用程序

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Vasile Calofir , Mircea-Ștefan Simoiu , Ruben-Iacob Munteanu , Emil Calofir , Sergiu-Stelian Iliescu
{"title":"基于机器学习的地震结构损伤估计通过一个可访问的web应用程序","authors":"Vasile Calofir ,&nbsp;Mircea-Ștefan Simoiu ,&nbsp;Ruben-Iacob Munteanu ,&nbsp;Emil Calofir ,&nbsp;Sergiu-Stelian Iliescu","doi":"10.1016/j.aej.2025.06.056","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces DIGITERRA, a novel web-based platform that enhances accessibility to seismic damage estimation through machine learning techniques. Trained on 120,000 nonlinear dynamic simulations, DIGITERRA provides accurate structural damage assessments without requiring specialized software or advanced technical expertise. The platform utilizes gradient boosting, a machine learning algorithm selected as the most effective after evaluating several alternatives. Feature selection is based on sensitivity analysis, SHAP analysis, and input from structural engineering experts to optimize both accuracy and accessibility. By allowing users to input basic building parameters and quickly receive damage state estimations, DIGITERRA democratizes access to advanced seismic analysis tools. This research demonstrates how machine learning can bridge the gap between complex engineering analyses and practical applications, empowering both specialists and non-specialists to make informed decisions about structural resilience in seismic-prone regions.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"127 ","pages":"Pages 848-862"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based estimation of seismic structural damage via an accessible web application\",\"authors\":\"Vasile Calofir ,&nbsp;Mircea-Ștefan Simoiu ,&nbsp;Ruben-Iacob Munteanu ,&nbsp;Emil Calofir ,&nbsp;Sergiu-Stelian Iliescu\",\"doi\":\"10.1016/j.aej.2025.06.056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces DIGITERRA, a novel web-based platform that enhances accessibility to seismic damage estimation through machine learning techniques. Trained on 120,000 nonlinear dynamic simulations, DIGITERRA provides accurate structural damage assessments without requiring specialized software or advanced technical expertise. The platform utilizes gradient boosting, a machine learning algorithm selected as the most effective after evaluating several alternatives. Feature selection is based on sensitivity analysis, SHAP analysis, and input from structural engineering experts to optimize both accuracy and accessibility. By allowing users to input basic building parameters and quickly receive damage state estimations, DIGITERRA democratizes access to advanced seismic analysis tools. This research demonstrates how machine learning can bridge the gap between complex engineering analyses and practical applications, empowering both specialists and non-specialists to make informed decisions about structural resilience in seismic-prone regions.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"127 \",\"pages\":\"Pages 848-862\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825008063\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825008063","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了DIGITERRA,这是一个新的基于网络的平台,通过机器学习技术增强了地震损伤估计的可访问性。经过12万个非线性动态模拟的训练,DIGITERRA可以提供准确的结构损伤评估,而不需要专门的软件或先进的技术专长。该平台利用梯度增强,这是一种机器学习算法,在评估了几种替代方案后被选择为最有效的算法。特征选择基于灵敏度分析、SHAP分析和结构工程专家的输入,以优化准确性和可及性。通过允许用户输入基本的建筑参数并快速接收损坏状态估计,DIGITERRA使高级地震分析工具的访问民主化。这项研究展示了机器学习如何弥合复杂工程分析和实际应用之间的差距,使专家和非专业人员能够对地震易发地区的结构弹性做出明智的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-based estimation of seismic structural damage via an accessible web application
This paper introduces DIGITERRA, a novel web-based platform that enhances accessibility to seismic damage estimation through machine learning techniques. Trained on 120,000 nonlinear dynamic simulations, DIGITERRA provides accurate structural damage assessments without requiring specialized software or advanced technical expertise. The platform utilizes gradient boosting, a machine learning algorithm selected as the most effective after evaluating several alternatives. Feature selection is based on sensitivity analysis, SHAP analysis, and input from structural engineering experts to optimize both accuracy and accessibility. By allowing users to input basic building parameters and quickly receive damage state estimations, DIGITERRA democratizes access to advanced seismic analysis tools. This research demonstrates how machine learning can bridge the gap between complex engineering analyses and practical applications, empowering both specialists and non-specialists to make informed decisions about structural resilience in seismic-prone regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信