Igor Bogush , Vladimir M. Fomin , Oleksandr V. Dobrovolskiy
{"title":"三维弯曲薄膜物理模拟的保形方法","authors":"Igor Bogush , Vladimir M. Fomin , Oleksandr V. Dobrovolskiy","doi":"10.1016/j.cpc.2025.109736","DOIUrl":null,"url":null,"abstract":"<div><div>Three-dimensional nanoarchitectures are widely used across various areas of physics, including spintronics, photonics, and superconductivity. In this regard, thin curved 3D membranes are especially interesting for applications in nano- and optoelectronics, sensorics, and information processing, making physics simulations in complex 3D geometries indispensable for unveiling new physical phenomena and the development of devices. Here, we present a general-purpose approach to physics simulations for thin curved 3D membranes, that allows for performing simulations using finite difference methods instead of meshless methods or methods with irregular meshes. The approach utilizes a numerical conformal mapping of the initial surface to a flat domain and is based on the uniformization theorem stating that any simply-connected Riemann surface is conformally equivalent to an open unit disk, a complex plane, or a Riemann sphere. We reveal that for many physical problems involving the Laplace operator and divergence, a flat-domain formulation of the initial problem only requires a modification of the equations of motion and the boundary conditions by including a conformal factor and the mean/Gaussian curvatures. We demonstrate the method's capabilities for case studies of the Schrödinger equation for a charged particle in static electric and magnetic fields for 3D geometries, including C-shaped and ring-shaped structures, as well as for the time-dependent Ginzburg-Landau equation.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"315 ","pages":"Article 109736"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal approach to physics simulations for thin curved 3D membranes\",\"authors\":\"Igor Bogush , Vladimir M. Fomin , Oleksandr V. Dobrovolskiy\",\"doi\":\"10.1016/j.cpc.2025.109736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Three-dimensional nanoarchitectures are widely used across various areas of physics, including spintronics, photonics, and superconductivity. In this regard, thin curved 3D membranes are especially interesting for applications in nano- and optoelectronics, sensorics, and information processing, making physics simulations in complex 3D geometries indispensable for unveiling new physical phenomena and the development of devices. Here, we present a general-purpose approach to physics simulations for thin curved 3D membranes, that allows for performing simulations using finite difference methods instead of meshless methods or methods with irregular meshes. The approach utilizes a numerical conformal mapping of the initial surface to a flat domain and is based on the uniformization theorem stating that any simply-connected Riemann surface is conformally equivalent to an open unit disk, a complex plane, or a Riemann sphere. We reveal that for many physical problems involving the Laplace operator and divergence, a flat-domain formulation of the initial problem only requires a modification of the equations of motion and the boundary conditions by including a conformal factor and the mean/Gaussian curvatures. We demonstrate the method's capabilities for case studies of the Schrödinger equation for a charged particle in static electric and magnetic fields for 3D geometries, including C-shaped and ring-shaped structures, as well as for the time-dependent Ginzburg-Landau equation.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"315 \",\"pages\":\"Article 109736\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525002383\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525002383","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Conformal approach to physics simulations for thin curved 3D membranes
Three-dimensional nanoarchitectures are widely used across various areas of physics, including spintronics, photonics, and superconductivity. In this regard, thin curved 3D membranes are especially interesting for applications in nano- and optoelectronics, sensorics, and information processing, making physics simulations in complex 3D geometries indispensable for unveiling new physical phenomena and the development of devices. Here, we present a general-purpose approach to physics simulations for thin curved 3D membranes, that allows for performing simulations using finite difference methods instead of meshless methods or methods with irregular meshes. The approach utilizes a numerical conformal mapping of the initial surface to a flat domain and is based on the uniformization theorem stating that any simply-connected Riemann surface is conformally equivalent to an open unit disk, a complex plane, or a Riemann sphere. We reveal that for many physical problems involving the Laplace operator and divergence, a flat-domain formulation of the initial problem only requires a modification of the equations of motion and the boundary conditions by including a conformal factor and the mean/Gaussian curvatures. We demonstrate the method's capabilities for case studies of the Schrödinger equation for a charged particle in static electric and magnetic fields for 3D geometries, including C-shaped and ring-shaped structures, as well as for the time-dependent Ginzburg-Landau equation.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.