A. Ceci , G. Costanza , C. Iandiorio , E. Marotta , P. Salvini , M.E. Tata
{"title":"铝蜂窝固体的生产,通过压缩测试和相关图像分析的力学特性","authors":"A. Ceci , G. Costanza , C. Iandiorio , E. Marotta , P. Salvini , M.E. Tata","doi":"10.1016/j.prostr.2025.06.068","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the production and successive mechanical characterization of metallic lattice structures. Mechanical characterization was carried out through compression tests. Rectangular AA6082 cross-section specimens, manufactured utilizing a unit cell design featuring two different cell fill factors, were produced using the Lost PLA method. The process entailed creating a PLA model using 3D printing, which was subsequently transformed into structures made from AA6082 aluminum alloy through casting techniques. Static compression tests were conducted on manufactured samples, on which a numerical (FEA) comparison modelling was performed. The mechanical behavior of the lattice structures was also analyzed using two image analysis methods: Digital Image Correlation and Discrete Fourier Transform.</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"68 ","pages":"Pages 372-378"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of aluminum cellular solids, mechanical characterization through compression tests and correlation with image analysis\",\"authors\":\"A. Ceci , G. Costanza , C. Iandiorio , E. Marotta , P. Salvini , M.E. Tata\",\"doi\":\"10.1016/j.prostr.2025.06.068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the production and successive mechanical characterization of metallic lattice structures. Mechanical characterization was carried out through compression tests. Rectangular AA6082 cross-section specimens, manufactured utilizing a unit cell design featuring two different cell fill factors, were produced using the Lost PLA method. The process entailed creating a PLA model using 3D printing, which was subsequently transformed into structures made from AA6082 aluminum alloy through casting techniques. Static compression tests were conducted on manufactured samples, on which a numerical (FEA) comparison modelling was performed. The mechanical behavior of the lattice structures was also analyzed using two image analysis methods: Digital Image Correlation and Discrete Fourier Transform.</div></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":\"68 \",\"pages\":\"Pages 372-378\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452321625000691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321625000691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Production of aluminum cellular solids, mechanical characterization through compression tests and correlation with image analysis
This study explores the production and successive mechanical characterization of metallic lattice structures. Mechanical characterization was carried out through compression tests. Rectangular AA6082 cross-section specimens, manufactured utilizing a unit cell design featuring two different cell fill factors, were produced using the Lost PLA method. The process entailed creating a PLA model using 3D printing, which was subsequently transformed into structures made from AA6082 aluminum alloy through casting techniques. Static compression tests were conducted on manufactured samples, on which a numerical (FEA) comparison modelling was performed. The mechanical behavior of the lattice structures was also analyzed using two image analysis methods: Digital Image Correlation and Discrete Fourier Transform.