{"title":"三点弯曲下疲劳寿命评估:S-D-S-ER和D-S-ER技术的比较","authors":"Ibrahim T. Teke , Ahmet H. Ertas","doi":"10.1016/j.prostr.2025.06.067","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, it has been presented a novel approach to enhancing structural fatigue performance through the development and comparison of two methodologies: The Sub-modeling-Density-Shape-Element Removal (S-D-S-ER) method and the traditional Density-Shape-Element Removal (D-S-ER) method. Using three-point bending fatigue tests, the S-D-S-ER method is shown to significantly improve fatigue life and overall structural integrity by integrating sub-modeling into the design process. This contrasts with the conventional D-S-ER method, which displayed standard mechanical behavior and a markedly shorter lifespan. Notably, the S-D-S-ER model exhibited mechanical behavior similar to viscous materials—a characteristic often observed in composites—while the D-S-ER method did not. These results highlight the potential of advanced numerical modeling, particularly the S-D-S-ER approach, to enhance fatigue resistance and durability. This advancement is particularly relevant for the design and optimization of 3D-printed components, which are becoming crucial in industrial and biomedical applications. The adoption of such innovative methods could lead to significantly more reliable, long-lasting designs, with profound implications for the future of structural engineering and additive manufacturing.</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"68 ","pages":"Pages 365-371"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Fatigue Life Under Three-Point Bending: Comparing S-D-S-ER and D-S-ER Techniques\",\"authors\":\"Ibrahim T. Teke , Ahmet H. Ertas\",\"doi\":\"10.1016/j.prostr.2025.06.067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, it has been presented a novel approach to enhancing structural fatigue performance through the development and comparison of two methodologies: The Sub-modeling-Density-Shape-Element Removal (S-D-S-ER) method and the traditional Density-Shape-Element Removal (D-S-ER) method. Using three-point bending fatigue tests, the S-D-S-ER method is shown to significantly improve fatigue life and overall structural integrity by integrating sub-modeling into the design process. This contrasts with the conventional D-S-ER method, which displayed standard mechanical behavior and a markedly shorter lifespan. Notably, the S-D-S-ER model exhibited mechanical behavior similar to viscous materials—a characteristic often observed in composites—while the D-S-ER method did not. These results highlight the potential of advanced numerical modeling, particularly the S-D-S-ER approach, to enhance fatigue resistance and durability. This advancement is particularly relevant for the design and optimization of 3D-printed components, which are becoming crucial in industrial and biomedical applications. The adoption of such innovative methods could lead to significantly more reliable, long-lasting designs, with profound implications for the future of structural engineering and additive manufacturing.</div></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":\"68 \",\"pages\":\"Pages 365-371\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245232162500068X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245232162500068X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment of Fatigue Life Under Three-Point Bending: Comparing S-D-S-ER and D-S-ER Techniques
In this study, it has been presented a novel approach to enhancing structural fatigue performance through the development and comparison of two methodologies: The Sub-modeling-Density-Shape-Element Removal (S-D-S-ER) method and the traditional Density-Shape-Element Removal (D-S-ER) method. Using three-point bending fatigue tests, the S-D-S-ER method is shown to significantly improve fatigue life and overall structural integrity by integrating sub-modeling into the design process. This contrasts with the conventional D-S-ER method, which displayed standard mechanical behavior and a markedly shorter lifespan. Notably, the S-D-S-ER model exhibited mechanical behavior similar to viscous materials—a characteristic often observed in composites—while the D-S-ER method did not. These results highlight the potential of advanced numerical modeling, particularly the S-D-S-ER approach, to enhance fatigue resistance and durability. This advancement is particularly relevant for the design and optimization of 3D-printed components, which are becoming crucial in industrial and biomedical applications. The adoption of such innovative methods could lead to significantly more reliable, long-lasting designs, with profound implications for the future of structural engineering and additive manufacturing.