基于ConvNeXtBase和Coyote优化额外树的可靠视觉智能皮革缺陷检测模型

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Brij B. Gupta , Akshat Gaurav , Razaz Waheeb Attar , Varsha Arya , Ahmed Alhomoud
{"title":"基于ConvNeXtBase和Coyote优化额外树的可靠视觉智能皮革缺陷检测模型","authors":"Brij B. Gupta ,&nbsp;Akshat Gaurav ,&nbsp;Razaz Waheeb Attar ,&nbsp;Varsha Arya ,&nbsp;Ahmed Alhomoud","doi":"10.1016/j.patrec.2025.06.019","DOIUrl":null,"url":null,"abstract":"<div><div>The leather industry continuously strives to ensure high product quality, yet defects often arise during stages like tanning, dyeing, and material handling. Traditional manual inspections are inconsistent, creating a need for automated, reliable visual intelligence systems. This paper introduces a Trusty Visual Intelligence Model for Leather Defect Detection Using ConvNeXtBase and Coyote Optimized Extra Tree. ConvNeXtBase is utilized for feature extraction, while an ExtraTreesClassifier, optimized with the Coyote Optimization Algorithm (COA), is employed for accurate defect classification, identifying issues like grain off, loose grains, and pinholes. Comparative analysis with models such as SVM, XGBoost, and LGBMClassifier demonstrates superior accuracy (0.90), precision, recall, and F1 score. The COA-optimized ExtraTreesClassifier is efficient and effective, making it ideal for real-time industrial applications.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"196 ","pages":"Pages 312-318"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trusty Visual Intelligence Model for Leather Defect Detection Using ConvNeXtBase and Coyote Optimized Extra Tree\",\"authors\":\"Brij B. Gupta ,&nbsp;Akshat Gaurav ,&nbsp;Razaz Waheeb Attar ,&nbsp;Varsha Arya ,&nbsp;Ahmed Alhomoud\",\"doi\":\"10.1016/j.patrec.2025.06.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The leather industry continuously strives to ensure high product quality, yet defects often arise during stages like tanning, dyeing, and material handling. Traditional manual inspections are inconsistent, creating a need for automated, reliable visual intelligence systems. This paper introduces a Trusty Visual Intelligence Model for Leather Defect Detection Using ConvNeXtBase and Coyote Optimized Extra Tree. ConvNeXtBase is utilized for feature extraction, while an ExtraTreesClassifier, optimized with the Coyote Optimization Algorithm (COA), is employed for accurate defect classification, identifying issues like grain off, loose grains, and pinholes. Comparative analysis with models such as SVM, XGBoost, and LGBMClassifier demonstrates superior accuracy (0.90), precision, recall, and F1 score. The COA-optimized ExtraTreesClassifier is efficient and effective, making it ideal for real-time industrial applications.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"196 \",\"pages\":\"Pages 312-318\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865525002478\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525002478","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

皮革行业不断努力确保高产品质量,但在鞣制,染色和材料处理等阶段经常出现缺陷。传统的人工检查是不一致的,这就产生了对自动化、可靠的视觉智能系统的需求。介绍了一种基于ConvNeXtBase和Coyote优化额外树的可信视觉智能皮革缺陷检测模型。使用ConvNeXtBase进行特征提取,使用COA优化的ExtraTreesClassifier进行准确的缺陷分类,识别出脱粒、松粒、针孔等问题。与SVM、XGBoost和LGBMClassifier等模型的比较分析表明,该方法具有更高的准确率(0.90)、精密度、召回率和F1分数。coa优化的ExtraTreesClassifier是高效的,使其成为实时工业应用的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trusty Visual Intelligence Model for Leather Defect Detection Using ConvNeXtBase and Coyote Optimized Extra Tree
The leather industry continuously strives to ensure high product quality, yet defects often arise during stages like tanning, dyeing, and material handling. Traditional manual inspections are inconsistent, creating a need for automated, reliable visual intelligence systems. This paper introduces a Trusty Visual Intelligence Model for Leather Defect Detection Using ConvNeXtBase and Coyote Optimized Extra Tree. ConvNeXtBase is utilized for feature extraction, while an ExtraTreesClassifier, optimized with the Coyote Optimization Algorithm (COA), is employed for accurate defect classification, identifying issues like grain off, loose grains, and pinholes. Comparative analysis with models such as SVM, XGBoost, and LGBMClassifier demonstrates superior accuracy (0.90), precision, recall, and F1 score. The COA-optimized ExtraTreesClassifier is efficient and effective, making it ideal for real-time industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信